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ABSTRACT  

              Phenolics, one category of micronutrients abundant in human diet, are believed to 

prevent some degenerative diseases such as cardiovascular diseases, digestive system 

diseases, and cancer. Numerous researchers have become increasingly interested in phenolics 

because of the recognition of the anti-inflammatory, antioxidant, anti-antiviral, and immune-

stimulating properties of phenolics. In this dissertation, the overarching hypotheses were that 

plant phenolics were degraded by gut or oral microorganisms, influencing the absorption of 

these components; phenolics were transported by Caco-2 cell monolayers; and phenolic 

efficacy of colitic prevention depended on bioavailability. Our long-term goal is to elucidate 

the metabolism pattern of phenolics that may benefit colon health to prevent colitis. The first 

study, with in vitro anaerobic incubations for human fecal or mouse cecal samples, the 

degradation rates of major phenolics from Echinacea purpurea and Hypericum perforatum 

extracts were significantly different in both incubation methods. Caffeic acid was produced 

and one metabolite was generated during the metabolism of Echinacea extract. The second 

study with salivary bacterial incubation in vitro, 7- mixture compound oral degradation rates 

were statistically significant differences. Cluster analysis showed that significantly different 

groups of high and low degraders of caffeic acid and rutin were evident. In the third study 

with Caco-2 cell line, Hypericum perforatum components, chlorogenic acid, an ester of 

caffeic acic and quinic acid, quercetin, amentoflavone, and pseudohypericin were compared 

to test the apparent permeabilities from apical to basolateral transfer, the results demonstrated 

that the components had a low permeable ability after 4 h incubation with the monolayer. 

The fourth study in dextran sulfate sodium (DSS)-induced C3H/HeOuJ mouse colitis model, 

treated with caffeic acid compared with rutin (both of 1.0 mmol/kg in diet) and hypoxoside 

extract, only caffeic acid protected against DSS-induced colitic histopathological damage, in 

association with normalization of CYP4B1 expression. Finally, to examine interindividual 

variability in the efficacy of caffeic acid, the other strain, a CD-1/IGS mouse model was used 

with DSS-induced colitis. The expression of CYP4B1 was also increased by caffeic acid/DSS 

treatment. The main other findings showed that two significant different subgroups of caffeic 

acid and rutin were identified based upon cluster analysis of cecal histopathological score in 

mice fed caffeic acid/DSS. Caffeic acid-fed mice with severe cecal damage had significantly 
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greater colonic MPO activity than did mice with mild cecal damage. Furthermore, the severe 

cecal damage subgroup was significantly associated with a lower plasma concentration of 

caffeic acid. These effects in mice fed caffeic acid/DSS were associated with the variety of 

caffeic acid bioavailability, probably due to gut microbial ecology, which is an important 

controllable variable in the effects of caffeic acid on colitis. 
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CHAPTER 1. GENERAL INTRODUCTION  

Introduction 

Medicinal plants and herbs may be used to prevent or treat diseases. Different herbs act 

on different systems of the body. Some herbs have been scientifically studied and found to be 

effective. Echinacea purpurea was used as preparations by the Plain Indians for the treatment of 

upper respiratory infections, burns, snakebites, and cancers. It has been demonstrated that plant 

extracts stimulated the immune system to combat bacterial and viral infections (Bany et al., 2003; 

Cohen et al., 2004; Schoop et al., 2006; Birt et al., 2008). Flavonoids, caffeic acid derivatives 

(caftaric acid, caffeic acid, cichoric acid) are the main chemical constituents in Echinacea 

(Roesler et al., 1991; Barnes et al., 2005). Superoxide dismutase (SOD) activity in peripheral 

blood was increased because of echinacoside and caffeic acid in E. purpurea which eliminated 

superoxide (O2
-) by a free radical scavenging effect in mice (Mishima et al., 2004). Also 

fourteen-day 30 and 100 mg/kg E. purpurea daily were shown to significantly induce apoptosis; 

and decreased Fas-Ag expression or increased in Bcl-2 expression from the splenic lymphocytes 

in mice compared to mice treated only with the vehicle (Di Carlo et al., 2003). The efficacy of E. 

purpurea may be related to the better bioavailability of its constituents. Caftaric acid, 

chlorogenic acid, and caffeic acid (1 µmol) were inoculated with human fecal slurry (10 ml) in 

fermentation bottles and all phenolics were degraded quickly after 2 hours of incubation 

(Gonthier et al., 2006). Two main metabolites of m-hydroxyphenylpropionic acid (m-HPP) and 

4-ethylcatechol were detected from caffeic acid fecal incubation (Olthof et al., 2001). Cichoric 

acid was degraded by polyphenol oxidases (PPO) into caftaric acid and caffeic acid during the 

preparation of Echinacea purpurea products (Nüsslein et al., 2000). Caffeic acid phenethyl ester 

(CAPE) decreased colonic NF-κB and prevented colitis in peptidoglycan-polysaccharide (PG-

PS)-treated rats injected with 30 mg CAPE /kg for seven days (Fitzpatrick et al., 2001). 

 Hypericum perforatum (Hp), as known St. John's Wort, has been used for centuries to 

treat anxiety, stress, and mental disorders. American Indians treated tuberculosis, wounds and 

severe pain with a tea made from its flowers. Hypericin, a main compound, had a value in the 

treatment of mild depression, strongly antiviral property and the treatment of HIV/AIDS 

(Chatterjee et al, 1998; Muller et al, 2001; Wurglics et al, 2006). Oral twice daily 100 mg/kg BW 

of Hypericum perforatum inhibited carrageenan-induced paw edema in mice and the same 

treatment with 100 mg/kg Hp inhibited both inducible nitric-oxide synthase (iNOS) and COX-2 
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expression modulated by lipopolysaccharide (LPS) and interferon in peritoneal macrophages 

(Raso et al,2002). Hp had significant radical-scavenging activity in cell-free and human vascular 

systems (Hunt et al, 2001; Cakir et al, 2003). Hp contains flavonoids (hyperoside, rutin, and 

quercetin) and naphthodianthrones (pseudohypericin and hypericin) (Butterweck et al, 2007). 

The efficacy of Hp may depend on the better absorption of its components and metabolites. 

Rutin was absorbed as quercetin because it was hydrolysed by the cecal microflora (Manach et 

al., 1997). Rutin (quercetin-3-rutinoside) was transformed into hyperoside (quercetin-3-

glucoside) by splitting off a rhamnose molecule. Then sugar moiety in quercetin glycoside 

(hyperoside) was deglycosylated by microbial glucosidase to quercetin (Baba et al., 1983). 

Eubacterium ramulus was a quercetin-3-glucoside-degrading anaerobic microorganism in in 

vitro (Schneider et al., 2000). Glycosides were almost completely metabolized by the intestinal 

microbiota within 20 min to 4 h depending on the sugar moiety and the type of glycosidic bond 

(Hein et al., 2008). Dietary rutin (feeding 0.1% rutin diet for 2 weeks) prevented DSS-induced 

colitis and possible colorectal carcinogenesis by suppressing pro-inflammatory cytokines (Kwon 

et al., 2005).  In a summary, Echinacea purpurea and Hypericum perforatum still have broad 

research areas for further investigation such as bioavailability, metabolism, anti-inflammatory 

action, especially related to molecular mechanism in anti-colitic pathway.   

             Until now, no plant extracts have been studied in fecal or oral bacterial microbiota. 

Metabolism is more complex and may interact with each other. Hypericum perforatum extract 

and phenolic mixture bioavailability studies in Caco-2 cell monolayers have not been reported. 

No studies have been done previously with caffeic acid to prevent colitis in DSS-induced animal 

model; and this compound seems to be an important component of some Echinacea species that 

may contribute a health effect. Furthermore, the study of bioavailability related to efficacy of 

caffeic acid preventive effect in colitis had not been studied before. In this whole project, we 

focused our research interest in these less explored areas. The overarching hypotheses were that 

plant phenolics were degraded by gut/oral microorganisms and absorbable in the human 

intestinal Caco-2 cells; and phenolic preventive efficacy of colitis depended on bioavailability. 

We conducted these studies into five individual hypotheses which contained two main research 

fields: microbial metabolism of herbal phenolics in vitro (Hypothesis and objective 1, 2, and 3) 
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and bioavailability related to anti-colitic effect of caffeic acid in vivo (Hypothesis and objective 4 

and 5). 

1. In the first study, we hypothesized that the degradation rates were similar for major 

phenolics from Echinacea purpurea and Hypericum perforatum extracts between human 

fecal and mouse cecal bacteria. Human fecal and mouse cecal samples were incubated 

with two extracts to determine which phenolics were least degraded, and hence predicted 

to be most bioavailable to the mouse gastrointestinal mucosa. 

2. In the second study, we hypothesized that human oral bacteria had significant but highly 

variable phenolic degradation capability, which may influence ability of these 

compounds to prevent periodontal disease. The objective was to access oral phenolic 

degradations and to identify microbes which were present in the human oral cavity. 

3. In the third study, we hypothesized that these Hypericum perforatum components were 

absorbable in a human intestinal cell model (Caco-2). Such absorption would be a 

necessary precondition for Hp component activity in vivo.  

4. In the fourth study, we hypothesized that administration of dietary phenolics, caffeic acid 

and rutin, would suppress expression of inflammatory markers and thus, intestinal 

damage in a mouse model of colitis. 

5. In the fifth study, we hypothesized that anti-colitis effect of caffeic acid depended on its 

bioavailability. The different subgroups were identified based on the histopathological 

score. Higher plasma caffeic acid concentration was related to the greater efficacy of 

colitis prevention. 

Dissertation Organization 

This dissertation is organized in eight chapters including general introduction, literature 

review of Echinacea purpurea, Hypericum perforatum and caffeic acid, three in vitro original 

research papers, two in vivo caffeic acid related papers, and general conclusion. Chapter 1 is a 

general introduction to the dissertation. Chapter 2 is a review of Echinacea purpurea, Hypericum 

perforatum and caffeic acid. It provides background information related to our research in 

metabolism pathway of herbal phenolics in vitro including gut or oral microflora, discussion of 

cell culture models, and methodologies. It also provides background information related to 
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caffeic acid metabolism pathway in vivo and in vitro; and related mechanisms of colitis.  

Three original research papers on in vitro studies are arranged in chapter 3-5 and two 

caffeic acid related papers on in vivo studies are arranged in chapter 6-7. Each paper was 

designed to address a specific research interest. One paper (chapter 6) was accepted by 

Experimental Biology and Medicine; and papers were also presented at the Experimental 

Biology Annual Meeting and Central States Society of Toxicology Meeting or some other 

scientific research meeting during the recent years. This dissertation ends in chapter 8 with a 

general discussion on the five original experimental papers and certain recommendations for 

future research. 
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CHAPTER 2. LITERATURE REVIEW  

I. GENERAL INTRODUCTION AND HEALTH EFFECTS OF MEDICINAL 

PLANTS 

             Botanical medicine, or phytomedicine, has become a promising area, an alternative to 

conventional medicine. Numerous researchers are focusing on herbal medicine all over the world. 

The use of various herbal remedies and supplements were found throughout human history from 

the origin of modern medicine. Many current drugs originated from plant sources and some of 

the most effective drugs contained the basic components of plants. The development of drugs 

from plants was required for detailed and large scale pharmacological screening of herbs. 

Chinese traditional herbal medicine was the most dominant of the ancient herbalism which was 

only based on the whole plant preparations and general effects. Modern Western herbalism 

focused on the effects of herbs on individual body systems and specific effects on cellular or 

molecular pathway. Herbs might be used for anti-inflammatory, immunostimulatory, antioxidant, 

antitumor, hemostatic and expectorant properties. It was estimated that around 80% of the 

worldwide population used herbal medicines, mainly for particular disease or symptom based on 

the property of a particular herb (Duke et al., 1999; van Wyk et al., 2004). The possibility of 

efficiency of plant-derived medicine has brought the growing scientific exploration in medicinal 

plant field. Based on current research, medical plants have shown to play important roles in 

human health. Seeds, roots and flowers were used as plant parts. Use of medicinal plants 

included culinary use or consumption of an herbal tea or supplements (Tapsell et al., 2006).  

       Herbal medicines were commonly used to treat some specific illness. Artichoke may reduce 

cholesterol levels according to a small clinical study (Bundy et al., 2008). Peppermint oil may 

have benefits for individuals with irritable bowel syndrome (Cappello et al., 2007). Thymus 

vulgaris has been shown to slow down the ageing process by maintaining the vigour of human 

body cells and as a treatment of epilepsy and depression (Andreatini et al., 2002; Tapsell et al., 

2006). Garlic was used to reduce the risk of heart disease by lowering blood fats and cholesterol 

levels; and was used to fight colds, sinusitis, and other respiratory infections based on antibiotic 

and antiviral properties (Singh et al., 2001; Yeh et al., 2001). Ginseng was generally used for 
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debility and weakness during recovery from illness; and was used to improve immunity and 

mental functioning, and promoted the healing processes (Chang et al., 2003). 

II. OVERALL INTRODUCTION OF ECHINACEA PURPUREA 

Echinacea is a perennial herb growing as a wildflower in the prairies of the Great Plains 

states of USA and Canada. There are three main Echinacea species which are used medicinally, 

including Echinacea purpurea (purple coneflower), Echinacea pallida (pale purple coneflower) 

and Echinacea augustifolia (narrow-leafed purple coneflower) (Cheminat et al., 1988). The 

extracts of roots, leaves and flowers are used for bacterial and viral infections, especially for 

upper respiratory infections such as tonsillitis, bronchitis and laryngitis and the treatment of 

fevers, colds and flu. It is reported to be insecticidal (Melchart et al., 1998; Borchers et al., 2000). 

           There are many different chemical constituents within each variety, such as flavonoids, 

caffeic acid derivatives (caftaric acid, caffeic acid, cichoric acid), alkylamides, alkaloids, 

polysaccharides (Roesler et al., 1991; Pellati et al., 2004; Barnes et al., 2005; LaLone et al., 

2007; Figure 2.1.). Although many of the active compounds of echinacea have been identified, 

mechanism of action, bioavailability, and relative potency are less known.   

 

Figure 2.1. Structure of Echinacea purpurea phenolic compounds 
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Composition of Echinacea purpurea  

    Using 80% methanol for extraction and analyzing by RP-LC method with diode-array 

detector (DAD) to quantify caffeic acid derivatives in various 3-year-old Echinacea roots in 

Italy, the total phenolic contents were detected as 10.49 mg/g for E. angustifolia, 17.83 mg/g for 

E. pallida and 23.23 mg/g for E. purpurea. Ranges of cichoric acid (0.83-19.27 mg/g), caftaric 

acid (0.81-3.97 mg/g), and echinacoside (1.08-16.28 mg/g) were found in these three plants. 

Cichoric acid and caftaric acid were the main phenolic compounds of E. purpurea. Caffeic acid 

and chlorogenic acid were not detected in these root samples (Pellati et al., 2004). Different 

Echinacea extracts which were obtained from the North Central Regional Plant Introduction 

Station (NCRPIS) (Ames, IA) of the USDA were analyzed by HPLC at 15µg/mL of extract to 

identify the concentrations of known constituents. The different accessions and harvest years of 

species included E. angustifolia, E. sanguinea, E. purpurea, and E. tennesseensis which 

contained greater quantities of Bauer alkamides than of ketones or caffeic acid derivatives. The 

concentration range of Bauer alkamides 3, 8–14 and 17 were around 0.1 µM to 2.8 µM. Ketones 

were present around 0.1 µM. Cichoric acid was present in one extract of each accession from the 

2003 harvest of E. purpurea at 0.07 µM to 0.28 µM. Caftaric acids were present at 0.01 µM to 

0.04 µM. Caffeic acid concentrations were not reported at this study (LaLone et al., 2007). 

However, based on earlier NCRPIS Annual Report (2004), the concentrations of caffeic acid 

extracted from Echinacea roots including E. angustifolia, E. purpurea, and E. pallida were from 

0.10 to 0.21 mg/g dry root. Many factors affected the level of these phenolic compounds 

including seasonal variations, drying methods, extraction methods, and growing location of the 

plant. Calculated by individual phenolic compound/dried plant material, the percentage of caffeic 

acid in E. purpurea extracts was 0.6-1.1% and cichoric acid (3.5-5.7 %) and caftaric acid (3.1-

4.5 %) were also the main phenolic compound of total polyphends at 7.9-10.9% (Iranshahi et al., 

2008). Using 60% ethanol at 60°C was found to be suitable for the extraction of the active 

ingredient yields of phenolics (53.4 mg/g  dry weight (DW)), caftaric acid (3.6 mg/g DW), and  

cichoric acid (28.8 mg/g DW) from dried adventitious roots of Echinacea purpurea obtained in 

bioreactor cultures in South Korea (Wu et al., 2008). 

Caffeic acid derivatives of Echinacea purpurea 

One study was done in China to analyze natural changes of active components of E. 

purpurea by measuring content of cichoric acid. The results were shown that the maximum 
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content of cichoric acid above ground occured in the blooming stage of mid July (Wang et al., 

2002).  A method was validated in Denmark to determine the content of cichoric acid and 

alkamides 2 and 8/9 in Echinacea purpurea, in which these two groups of compounds were 

measured by the same procedure. A reversed-phase high-performance liquid chromatography 

eluents were A = MeCN (acetonitrile)/water (5:95), B = MeCN/water (95:5), and C = 

MeCN/water (5:95) containing 0.1% v/v Trifluoroacetic acid (TFA). The products were shown a 

great variation in the content of two groups of compounds. The concentrations of cichoric acid 

and alkamides 2 and 8/9 were 24.3, 0.77, 1.20 mg/g in root of Danish-grown Echinacea 

purpurea (Mølgaard et al., 2003). Cichoric acid was also detected by capillary electrophoresis 

method as an appropriate marker of the quality of E. purpurea in dried press juice (Mancek et al., 

2005). Cichoric acid (19.21 mg/g dry plant biomass), caftaric acid (3.56 mg/g dry biomass), and 

chlorogenic acid (0.93 mg/g dry biomass) were found in inoculation of leaf explants of 

Echinacea purpurea (Moench) with Agrobacterium rhizogenes. These results demonstrated that 

the biosynthetic pathway might be feasible to produce biologically active caffeic acid derivatives 

(Liu et al., 2006). In a summary, caffeic acid derivatives compositions of Echinacea purpurea 

were different depending on the preparation methods and herbal locations.  

A. Health effect of of Echinacea purpurea   

a. Studies of Echinacea purpurea on common colds or upper respiratory tract 

Extracts of Echinacea were widely used by consumers and practitioners for 

preventing and treating common colds and the second top-selling herbal product currently in the 

USA. Some controlled clinical trials have investigated E. purpurea might be effective for the 

early treatment of upper respiratory tract in adults (Barrett 2003; Blumenthal 2005). A 

randomized, double-blind, placebo-controlled study to evaluate the effectiveness and safety of a 

preparation containing Echinacea in four hundred thirty children (aged 1 to 5 years), herbal 

preparation (Chizukit) containing 50 mg/mL of echinacea prevented the incidence of respiratory 

tract infection during 12 weeks (Cohen et al., 2004). To determine whether Echinacea prevented 

rhinovirus-induced colds or not in placebo-controlled trials,  Schoop et al (2006) performed a 

systematic search of English- and German-language literature using the MEDLINE, EMBASE, 

and many other databases with total of 234 articles through the literature search. The meta-

analysis reported that extracts of Echinacea were effective in the prevention of symptoms of the 
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common cold after clinical inoculation with rhinovirus (Schoop et al., 2006). However, in 

another randomized, double-blind, placebo-controlled trial, using Kaplan-Meier curves and 

Wilcoxon rank sum test, patients who received 100 mg of E. purpurea 3 times daily for 14 days 

did not relieve symptoms (sneezing, nasal discharge, nasal congestion, headache, sore or scratchy 

throat, hoarseness, muscle aches, and cough) during the common cold (Yale et al., 2004). Also in 

two review articles, there was not enough evidence or not fully consistent evidence to 

recommend Echinacea preparations for the treatment or prevention of upper respiratory tract 

infections (Melchart et al., 2000; Linde et al., 2006). In a summary, Echinacea preparations were 

not recommended for treating common colds and upper respiratory tract because of the 

controversial investigation result.  

b. Anti-inflammatory effects  

                 Many studies have reported that E. angustifolia, E. pallida, and E. simulata possessed 

an antiinflammatory activity which was differed from species, extracts, and fractionation and 

contributed to main constituents, including alkamides or caffeic acid derivatives (LaLone et al., 

2007; Birt et al., 2008). Mouse paw edema which was induced by subplantar injections of 50 µL 

of a 1% w/v carrageenan solution into one hind paw (2 to 72 h) was inhibited at 100 mg/kg 

concentration of E. purpurea by gavage. Treatment with Echinacea down-regulated 

cyclooxygenase-2 (COX-2) expression induced by lipopolysaccharide (LPS) and interferon- � 

(Raso et al., 2002). Three different alkamides (A5, A7, A8) from a CO2 extract of the roots of E. 

angustifolia  have suppressed the expression of COX-2 and prostaglandin (PG) E2 formation at 

sites of inflammation in H4 human neuroglioma cells (Hinz et al., 2007). Another caffeic acid 

derivative, Echinacoside, was from root extract of E. pallida and inhibited the signs of 

inflammation injected by 1 ml of a gel (1% ethylcellulose) on the dorsal area of the rats for 48 

and 72 h (Speroni et al., 2002). Combination of different alkamides in Echinacea extracts might 

play a synergistic role in inhibition of PGE2 production in lipopolysaccharide-stimulated 

RAW264.7 mouse macrophage cells. Active extracts contained <2.8 µM of specific alkamide in 

15 µg/mL of extract E. angustifolia, E. pallida, E. simulata, and E. sanguinea significantly have 

inhibited PGE2 production. However, 10 µM was needed as a minimum concentration of the 

synthetic alkamides to inhibit PGE2 (LaLone et al., 2007). In a summary, different species of 

Echinacea had an effective antiinflammatory action which was differed from species, extracts, 
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and fractionation; the antiinflammatory activity was contributed to alkamides or caffeic acid 

derivatives.  

c. Antioxidant effects 

Assessing free radical scavenging was mainly used to evaluate the antioxidant 

capacity in medicinal plants and other nutritional antioxidant supplements. Antioxidant 

measurements could be based on the evaluation of lipid peroxidation or the test of free radical 

scavenging ability (Sanchez-Moreno, 2002). The radical scavenging activity of phenolic 

compounds was largely influenced by the number of hydroxyl groups on the aromatic ring. The 

higher the number of hydroxyl groups, the greater the radical scavenging activity (Wang et al., 

2003). Capacities to quench 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals of phenolic 

compounds in Echinacea spp were shown that echinacoside (EC50 = 6.6 µM )>cichoric acid (8.6 

µM )>cynarin (11.0 µM )>chlorogenic acid (18.9 µM )>caffeic acid (19.1 µM )>caftaric acid 

(20.5 µM ) because of cichoric acid and echinacoside possessing two adjacent hydroxyl groups 

on each of their phenolic rings. The average EC50 value for E. purpurea (134µg/ml) was lower 

than E. pallida and E. angustifolia (167 and 231 µg/ml, respectively) (Pellati et al., 2004). The 

enzyme superoxide dismutase (SOD) was an important antioxidant defense in nearly all cells 

exposed to free radical. Mishima et al (2004) reported SOD activity in peripheral blood was 

increased because of antioxidants such as echinacoside and caffeic acid in E. purpurea which 

eliminated superoxide (O2 
-) by a free radical scavenging effect in male ICR mice (Mishima et 

al., 2004). Recently, Ali et al. (2008) indicated that E. purpurea decreased liver SOD activity 

(156.7±10.3 and 226.1±7.5 at two and four weeks, respectively) in rats treated with Cyproterone 

Acetateto induce toxicity (Ali et al., 2008). In a summary, Echinacea species had an effective 

antioxidant capacity across species and extracts; the antioxidant capacity was attributed to ability 

to scavenge free radical.  

d.  Antiantiviral effects  

Echinacea extracts and its metabolic constituents possessed some antiviral and 

antibacterial activities (Cheminat et al., 1988). An earlier study did not report E. angustifolia root 

extracts had an effect against rhinovirus infection in 437 volunteers (Turner et al., 2005). By 

comparison with placebo, Schoop et al (2006) performed a systematic search. The meta-analysis 

was reported that extracts of Echinacea were effective in the prevention of rhinovirus-induced 
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colds (Schoop et al., 2006). And recent studies within Echinacea against HIV in vitro, extracts of 

E. purpurea consistently provided the most robust inhibition of HIV without cellular 

cytotoxicity. When E. purpurea was fractionated, one fraction which contained cichoric acid had 

significant anti-HIV activity in the HeLa37 cell line (Birt et al., 2008). 

e. Immunomodulatory properties of Echinacea 

Echinacea was also commonly used as an immunostimulant for a cold and flu 

remedy. Stimulation of tumor necrosis factor alpha (TNF-α), IL-10 and nitric oxide (NO) by 

Echinacea extract (5 µg/mL) was dose-dependent and was statistically significant compared with 

placebo control in RAW264.7 macrophage cells with LPS. And TNF- α and IL-10 levels 

produced by Echinacea increased at approximately 30 h poststimulation and then declined 

sharply by 24-48 h, whereas LPS-induced TNF- α and IL-10 continued to increase over the 48-h 

time period (Rininger et al., 2000). Purified cichoric acid has been shown to decrease NF-κB, 

TNF-alpha and NO levels in LPS-stimulated macrophage (Stevenson et al., 2005). Alkylamides, 

main constituents of Echinacea plant preparations, were showed to inhibit TNF-alpha via 

cannabinoid receptor 2 (CB2) receptors, increased cAMP, Jun N-terminal (JNK) and mitogen-

activated protein kinase (MAPK)/p38 signaling pathways as well as NF-κB, ATF-2 and cAMP 

response element binding protein (CREB-1) activation in primary human 

monocytes/macrophages with LPS (Gertsch et al., 2004). And this signaling cascade within 

macrophages was confirmed by infection with Listeria monocytogenes recently (Sullivan et al., 

2008). E. purpurea activated macrophages to stimulate IFN-gamma production which was 

association with the secondary activation of T lymphocytes, resulting in a decrease in IgG and 

IgM production. Also cytokines released from macrophages in mouse peripheral blood after E. 

purpurea administration and CD 4 and CD 8 subsets were more immunologically enhanced by 

E. purpurea (Mishima et al., 2004). In a recent study, Echinacea preparations were reported to 

modulate both innate and adaptive immune responses in mice which were gavaged with 130 

mg/kg above Echinacea extract daily for seven days and immunized with sheep red blood cells. 

The percentages of CD49+ and CD19+ lymphocytes in spleen and natural killer cell cytotoxicity 

were increased and antibody response to sRBC was significantly augmented. In mitogen-

stimulated splenic cells, cytokine production of interferon-alpha was increased, however, tumor 

necrosis factor-gamma and interleukin (IL)-1beta were inhibited and more interestingly, IL-4 and 

IL-10 were presented on higher level only in E. angustifolia and E. pallida-treated mice (Zhai et 
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al., 2007a). Furthermore, in another study, E. pallida (EPA) and E. purpurea (EP) reported to 

inhibit nitric oxide (NO) production and TNF-alpha release as a dose-dependent manner in LPS-

stimulated RAW 264.7 macrophages in vitro (Zhai et al., 2007b). In a summary, Echinacea 

species possessed an effective immunomodulatory property with different species and extracts; 

especially, the activity was contributed by the change of cytokine expression in macrophage 

cells, lymphocytes and natural killer cell.   

f. Echinacea immune-stimulating properties and tumor cells 

Based on the research in cancer therapy for Echinacea immune-stimulating 

properties, an animal study demonstrated Echinacea had enhanced cellular immunity in leukemic 

AKR/J mice, resulting in a suppressive effect on leukemia, via increased production of 

endogenous interferon-gamma (Hayashi et al., 2001). E. purpurea immunized mice had 

significantly prolonged life spans compared with non-immunized mice. Natural killer (NK) cells 

were demonstrated as mediators of tumor cytolysis and significantly elevated in immunized 

leukemic mice treated with E. purpurea (Currier et al., 2002). Also fourteen-day 30 and 100 

mg/kg E. purpurea daily were shown to significantly induce apoptosis; and decreased Fas-Ag 

expression or increased in Bcl-2 expression from the splenic lymphocytes in mice compared to 

mice treated only with the vehicle (Di Carlo et al., 2003). Echinacea preparation have inhibited 

angiogenesis response induced by human lung and kidney cancer cells in mice skin evaluated 3 

days intracutaneous grafting; also the incidence of CD16+ and CD56+ NK cells and the 

stimulation of granulocytes metabolic activity have been increased in human volunteer blood 

tested by chemiluminescence assay (Rogala et al., 2008). In a summary, Echinacea species did 

not clearly protect from cancer based on the present studies. More research will be needed to 

investigate these interesting areas related to preventing cancer or cancer treatment.  

g. Cytotoxic activity of Echinacea 

Different concentrations of Echinacea have been tested for cytotoxicity study. 

Ranging from 240 to 1102 µg/mL of all Echinacea extracts (including each species, accession 

and yearly harvest) showed significant cytotoxicity with 25–72% survival compared with vehicle 

control in RAW264.7 macrophage cells using the Celltiter96 Aqueous One Solution Cell 

Proliferation Assay, whereas all extracts diluted from 1% concentration to 0.1% (concentrations 

ranging from 24 to 110 µg/mL of extract) had no significant cytotoxicity remained after a 24 h 
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incubation. However, only one extract of E. pallida from the 2003 harvest still showed that 

cytotoxic at the 0.1% dilution (LaLone et al., 2007). On two human cancer cell lines, 

polyacetylenes and polyenes isolated from roots of Echinacea pallida were assessed on human 

pancreatic MIA PaCa-2 and colonic COLO320 cancer cell as concentration-dependent 

cytotoxicity manner, with a greater potency in the colonic cancer cells (Chicca et al., 2008).   

B. Bioavailability of Echinacea purpurea 

Bioavailability of caffeic acid conjugates (caftaric acid, cichoric acid and echinacoside) 

has not yet been well studied. Most of the present research was focused on the bioavailability 

and pharmacokinetics of different alkamides in human and some cell culture models. An earlier 

study showed that alkamides from Echinacea species, dodeca-2 E,4 E,8 Z,10 E/ Z-tetraenoic 

acid isobutylamides (1/ 2) transported through human adenocarcinoma colonic cell line Caco-2 

monolayer at 30 minutes after apical loading of 25 µg/ml and about 15 % of these alkamides 

were detectable on the basolateral side (Jager et al., 2002). In a randomized crossover study, six 

healthy adults of both genders consumed 4 g of each Echinacea root powder in a single dose 

which contained E. angustifolia (mainly 49.6 µmol echinacoside), E. purpurea (mainly 41.2 

µmol cichoric acid), and E. pallid (mainly 41.0 µmol echinacoside and cichoric acid). The 24h 

urinary recovery of cichoric acid of E. purpurea and E. pallida were 0.36 ± 0.25 and 0.34 ± 0.31 

% of ingested dose. The bioavailability of cichoric acid in these two Echinacea species was very 

low (Lee et al., 2006). However, another healthy volunteer study did not detect caffeic acid 

conjugates (caftaric acid, cichoric acid and echinacoside) in any plasma sample at any time after 

ingestion of Echinacea tablets manufactured from an ethanolic liquid extract, whereas 

alkylamides were detected in plasma 20 minutes after tablet ingestion (Matthias et al., 2004; 

Matthias et al., 2005). In in vitro Caco-2 assays, some caffeic acid conjugates were not found to 

diffuse across the monolayers and suggested that these compounds did not cross the intestinal 

barrier. In contrast to this, alkylamides were found to diffuse rapidly through Caco-2 monolayers 

(Matthias et al., 2005). One alkamide pharmacokinetics study in Echinacea angustifolia as a 

randomized crossover design for oral E. angustifolia extract in 11 healthy subjects, the maximum 

concentration of main alkamides, dodeca-2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides, 

appeared after 30 minutes at 10.88 ng/mL for the 2.5 mL dose analyzed by liquid 

chromatography/mass spectrometry (LC/MS) (Woelkart et al., 2005). In another randomized 



www.manaraa.com

14 

crossover single-dose study for E. purpurea, 10 volunteers had received either 4 ml of the 

standardized E. purpurea (Echinaforce) tincture or 12 E. purpurea (Echinaforce) tablets orally 

which contained the same 0.07 mg of the major alkamides (dodeca-2E,4E, 8Z,10E/Z-tetraenoic 

acid isobutylamides). Alkamides in Echinaforce tincture appeared 0.40 ng/ml serum at 30 min 

after application, whereas alkamides in tablets were 0.12 ng/ml serum at 45 min (Woelkart et al., 

2006). Similar bioavailability of alkylamides was found from the liquid (200, 300 mg/ml) and 

tablet (600, 675 mg/tablet) Echinacea formulations in a two-way crossover study in humans 

(Matthias et al., 2007). Woelkart et al. (2008) performed similar study E. purpurea, the maximum 

concentrations of dodeca-2 E,4 E,8 Z, 10 E/ Z-tetraenoic acid isobutylamides in plasma were 

0.22 ng/mL after administration of Echinaforce tablets, 0.22 ng/mL after taking Echinaforce 

Junior tablets and 0.23 ng/mL after administration of an Echinacea sore throat spray (Woelkart et 

al., 2008). Three different dose levels (0.07, 0.21 and 0.9 mg) of the major alkamides, dodeca-

2E,4E,8Z,10E/Z-tetraenoic acid isobutylamides, from Echinacea purpurea phytotherapeutic 

lozenges were consumed by six healthy volunteers of both genders. Alkamides were found to be 

rapidly absorbed and measurable in plasma 10 min after administration of 0.21 and 0.9 mg 

lozenges and remained detectable for 3 h; 0.07 mg lozenges were measurable 20 min after 

administration and remained 2 h (Guiotto et al., 2008). In a summary, caffeic acid derivatives 

(caftaric acid, cichoric acid and echinacoside) in Echinacea species were not detectable in both 

cell culture models and human studies whereas the alkamides were measured in two kind studies.  

That implied the caffeic acid derivatives were not absorbable or metabolized and formed to new 

products which triggered our interesting in further research.  

C. Degradation and metabolism of Echinacea purpurea 

Degradation of cichoric acid in Echinacea purpurea products 

During the preparation of Echinacea purpurea products, cichoric acid (2R, 3R-O-

dicaffeoyltartaric acid) was degraded by polyphenol oxidases (PPO) into caftaric acid (2-O-

caffeoyltartaric acid; monocaffeoyltartaric acid) and caffeic acid. In the meantime, initial 

esterase activity was involved to catalyze the hydrolysis of cichoric acid. Caftaric acid was 

degraded as well but more slowly than cichoric acid. Both antioxidant ascorbic acid and ethanol 

inhibited oxidative degradation and hydrolysis as synergistic effect (Nüsslein et al., 2000). The 

other three natural antioxidants (citric acid, malic acid, and hibiscus extract) also stabilized the 
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major caffeic acid derivatives (caftaric acid, caffeic acid, cichoric acid), whereas caffeic acid 

derivatives were subject to degradation in the control sample. Stability was dependent upon the 

concentration of antioxidant added (Bergeron et al., 2002). With respect to alkamide stability, 

comparing with phenolic-depleted and phenolic-rich dry E. purpurea extracts and phenolic-

depleted and phenolic-rich DMSO E. purpurea extracts, alkamides degradation was faster in dry 

films than in DMSO solution resulted from greater surface exposure to oxygen in dry films. The 

phenolic acids played an important role in inhibiting the loss of the alkamides as antioxidants in 

dry E. purpurea extracts, whereas phenolics accelerated to degrade alkamides in DMSO E. 

purpurea extracts (Liu et al., 2007). In a summary, caffeic acid derivatives (caftaric acid, 

cichoric acid and echinacoside) in Echinacea species were not stable during preparation of 

Echinacea products and hydrolyzed by polyphenol oxidases.  

            Cytochrome P450 activity in metabolism of Echinacea purpurea 

Cytochrome P450 (CYP) may affect the metabolism and further bioavailability of 

Echinacea. Some studies have shown Echinacea preparation was able to inhibit CYP in vitro. 

Using CYP probe drugs caffeine for CYP1A2, tolbutamide for CYP2C9, dextromethorphan for 

CYP2D6, and midazolam for hepatic and intestinal CYP3A to assess the effect of Echinacea 

purpurea root (1600 mg x 8 days) in twelve healthy subjects, Echinacea administration 

significantly increased the systemic clearance of intravenous midazolam by 34% and the oral 

availability of midazolam was significantly increased. In the meantime, the oral clearance of 

caffeine and tolbutamide were significantly reduced. These results were due to the inhibition of 

CYP3A at hepatic and intestinal sites as well as improving of CYP1A2 and CYP2C9 activity 

during interaction with Echinacea (Gorski et al., 2004). Recently, an in vitro study showed that 

E. purpurea extract had inhibited CYP3A4 activity at specific site which was associated with 

higher inhibition for metabolism of 7-benzyloxy-trifluoromethylcoumarin (BFC) and 7-

benzyloxyquinoline (BQ) compared with that of testosterone in fluorometric assays (Hansen et 

al., 2008). Although Echinacea purpurea extract possessed the weakest inhibition ability with an 

IC50 value (5.03 mg/ml) which was an inhibitory potential only 0.3% of that of St. John's wort 

among six commercially available herbal products. The study reported Echinacea purpurea 

inhibited CYP3A4 mediated metabolism in C-DNA baculovirus which expressed human 
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Cytochrome P450 3A4 supersomes based on the decreased formation of 6-OH-testosterone 

(Hellum et al., 2008).  

III.  OVERALL INTRODUCTION OF HYPERICUM PERFORATUM 

            Hypericum perforatum (Hp), also called St. John’s wort, is a perennial plant with yellow-

flower common to the western United States, Europe, and Asia. St. John’s wort has a complex 

and diverse chemical component system. Constituents contain flavonoids (including hyperoside, 

rutin, and quercetin), naphthodianthrones (pseudohypericin and hypericin), anthraquinones, 

carotenoids, cumarine, carbolic acids, phloroglucins (hyperforin), xanthones, proanthocyanidins, 

and volatile oils (Lawvere et al., 2005& Butterweck et al., 2007). The constituents which were 

presented in the extracts depended on different extraction procedures and different accessions 

(Hammer et al., 2007). Chlorogenic acid was the highest level concentration observed in Soxhlet 

ethanol Common and Elixir extracts. Rutin was the most abundant flavonoid detected in all 

accessions. However, very few constituents were detected in the Soxhlet chloroform extracts 

(Hammer et al., 2007). The main active components of St. John’s wort were thought to be 

hypericin and hyperforin. The recent interests are other plant constituents (e.g., flavonoids and 

flavonoid derivatives, pseudohypericin, amentoflavone) that may have antidepressant and anti-

inflammatory effects (Wurglics et al., 2006 & Hammer et al., 2008). 

 Extracts of Hypericum perforatum has been recommended traditionally for a wide range 

of medical conditions. The most common use of Hp is the treatment of depression. Hp also has 

anti-inflammatory, antibacterial, antiviral properties, and has been used to help heal wounds and 

burns (Herold et al., 2003; Raso et al., 2002). Because Hp can cause some serious interactions 

with prescription drugs, herbs, or supplements; safety concerns exist as with most conventional 

and complementary therapies. So more research is needed in this area to understand how Hp will 

affect human health. 
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Figure 2.2. Structure of Hypericum perforatum phenolic compounds 

            Constituents of Hypericum perforatum extract 

            Many different classes of chemicals were detected from select plant species (Lavie et al., 

1995). The four classes and main active constituents which are related to our present studies will 

be discussed below including: flavonoids (such as hyperoside, quercetin and rutin), and 

biflavonoids (amentoflavone), caffeic acid derivatives (chlorogenic acid), and 

naphthodianthrones (pseudohypericin). From a total of 30 H. perforatum individuals which were 

collected by full flowering at 10 sites in Northern Turkey, the concentrations of pseudohypericin 

among populations were up to 2.94 mg/g dry weight and the variability of populations was 

significant difference and the concentrations of hyperforin ranged from traces to 2.94 mg/g dry 

weight (Cirak et al., 2008). The total contents of hypericin and pseudohypericin were much 

lower from 31.34% to 80.18% for tablets than product label claims in commercially available Hp 

herbal preparations (Draves et al., 2003). The 10 constituent concentrations were quantified in 

10µg/ml of Hp extracts, fractions and subfractions (Hammer et al., 2008). The most abundant 

constituents in the original Hp extract were hyperforin (12.5 µM), chlorogenic acid (6.1 µM), 

rutin (2.7 µM), hyperoside (1.6 µM), isoquercitrin (0.3 µM), quercitrin (0.03 µM), quercetin (0.2 
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µM), amentoflavone (0.2 µM), pseudohypericin (0.2 µM), and hypericin (0.1 µM). After the 

third round of fractionation, the concentrations of six constituents were not detected. Only four 

bioactive components in this fraction were found as below: greatest amount of chlorogenic acid, 

followed by roughly equal amounts of quercetin and amentoflavone, and the least amount of 

pseudohypericin (0.1: 0.07: 0.08: 0.03 µM).  

A. Health effect of of Hypericum perforatum 

a. Antidepressant properties 

                   Although the plasma concentration of the hypericin could not be measured or very 

low in the brain after H. perforatum extracts or pure hypericin in oral administration compared 

with hyperforin which was detected as 10-fold level of hypericin in humans (Wurglics et al., 

2006). The constituents such as pseudohypericin, hypericin, hyperforin, and flavonoid 

compounds may contribute to the antidepressant actions for Hp (Chatterjee et al., 1998 & Muller 

et al., 2001; Schulz et al., 2001). A meta-analysis analysis showed the significantly positive 

responses to Hp involving over 1,500 individuals based on the Hamilton Depression Scale 

(HAMD) before and after treatment (Linde et al., 1996). The later meta-analysis covering 

clinical trials also supported this observation on Hp therapies for depression and dysthymia (a 

chronic but milder form of depression) (Kasper et al., 2001). 

Two double-blind, randomized trials reported 800 mg (Harrer et al., 1999) or 500 mg 

(Schrader et al., 2000) Hp daily was as effective as 20 mg/day of fluoxetine (Prozac®), a drug 

for antidepressant. Both of two trials took six weeks and only fewer side effects were found in 

patients taking Hp. The other two similar trials showed Hypericum extract had 83% and 100% of 

fluoxetine therapy efficacy (Friede et al., 2001 & Behnke et al., 2002). In an animal study, H. 

perforatum extract displayed dose-dependent antidepressant effect (doses 7, 35 and 70 mg/kg 

BW) in mild to moderate depression induced by the forced-swimming and tail-suspension 

methods (Bach-Rojecky et al., 2004). However, a recent randomized 8-week double-blind trial in 

a Brazilian study was less efficacious using Hp 900 mg/day compared with 20 mg/day fluoxetine 

and placebo in seventy-two outpatients (Moreno et al., 2006).  For a pilot study to examine the 

effectiveness, safety, tolerability, and pharmacodynamics of Hypericum perforatum, 150 to 900 

mg/day St. John's wort three times daily had an effective treatment for thirty-three youths who 

were diagnosed with major depressive disorder for four weeks (Findling et al., 2003). More 
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recently, from the trials which were searched in computerised databases and bibliographies of 

relevant articles, including a total of 29 trials (5489 patients) compared with placebo and 

synthetic standard antidepressants, Hypericum extracts were still superior to placebo in patients 

with major depression to close standard antidepressants and had fewer side effects than standard 

antidepressants (Linde et al., 2008).   In a summary, Hypericum perforatum possessed the 

pharmacological effects, which were contributed by pseudohypericin, hypericin, hyperforin, and 

flavonoid compounds with antidepressant property. 

b. Antidepressant mechanism of Hypericum perforatum  

 The action mechanism of H. perforatum was complicated and studied by several 

aspects, including a non-selective blockade of the reuptake of serotonin, noradrenaline and 

dopamine; an increase in density of serotonergic and dopaminergic receptors; an increased 

affinity for GABAergic receptors; and the inhibition of monoaminoxidase enzyme activity 

(Rodríguez-Landa et al., 2003). The other in vitro studies reported that the mechanism could 

involve the actions of hyperforin on non-specific presynaptic effects which resulted in the non-

selective inhibition of the uptake of many neurotransmitters and the interaction with dopamine or 

opioid receptors. In an animal studies, Hypericum extract might indirectly activate sigma 

receptors or produce endogenous ligand in vivo (Mennini et al., 2004). Hp was given for 7 days 

to twenty healthy males to measure evening salivary cortisol. Salivary cortisol was increased and 

suggested that HP may enhance salivary cortisol and via 5-HT2 mechanism (Franklin et al., 

2006). Furthermore, amentoflavone was found to inhibit brain benzodiazepine binding sites of 

the GABAA-receptor in vitro (Baureithel et al., 1997). Amentoflavone had also remarkable 

affinity for the δ-opioid receptor subtype. Binding at serotonin (5-HT), D(3)-dopamine, and 

delta-opiate receptors were also decreased by amentoflavone (Butterweck et al., 2003 & 

Butterweck et al., 2007).  

c. Anti-inflammatory activity of Hypericum perforatum 

                 An earlier animal model in rats induced by injection of caraginan and prostaglandin 

E1, Hypericum perforatum was found to suppress both the inflammatory effect and the leukocyte 

infiltration (Shipochliev et al., 1981). Oral twice daily 100 mg/kg BW of  Hypericum perforatum 

inhibited carrageenan-induced paw edema in mice and the same treatment with 100 mg/kg Hp 
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inhibited both inducible nitric-oxide synthase (iNOS) and COX-2 expression modulated by 

lipopolysaccharide (LPS) and interferon in peritoneal macrophages (Raso et al.,2002). Also 

Hypericum perforatum was reported to inhibit 5-lipoxygenase (5-LO) activity in cell-free 

systems, a key enzyme in the formation of proinflammatory eicosanoids from arachidonic acid 

(Herold et al., 2003).  

In the other two different human epithelial cell lines (alveolar A549/8 and colon DLD-1 

cells), iNOS expression was also inhibited by dose dependently. Furthermore, the DNA binding 

activity of the transcription factor signal transducer and activator of transcription-1alpha (STAT-

1alpha) was down-regulated by Hp extract, although nuclear factor-kappaB was not affected 

(Tedeschi et al., 2003). Hyperoside and quercetin inhibited nitric oxide synthase (NOS) in rat 

cerebral homogenate and blood at 63.06 and 57.54 µM, and those of 56.23 and 158.49 µM, 

respectively. These results suggested that the galactose moiety in hyperoside may be associated 

with the selectivity of the NOS inhibition (Luo et al., 2004).  

To test Hp extracts for inhibiting the production of prostaglandin E2 (PGE2) in 

RAW264.7 Mouse Macrophage Cells, pseudohypericin at 1 and 2µM significantly reduced LPS 

induced PGE2 levels in light-activated but not dark treatments. Hyperforin significantly 

decreased PGE2 levels at 40 and 80 µM. These two constituent concentration ranges were present 

in the Hp extracts from different Hypericum accessions, and this work demonstrated that 

pseudohypericin and hyperforin might be the primary anti-inflammatory constituents along with 

the flavonoids. However, quercetin significantly reduced PGE2 at 5-40µM. Quercitrin and 

isoquercitrin reduced PGE2 levels at 5-20µM. Amentoflavone significantly reduced PGE2 levels 

at 10µM. These four compound concentrations were much higher than all Hp extract accessions. 

Rutin was the only flavonoid that did not significantly reduce LPS-induced PGE2 levels at the 

used doses (Hammer et al., 2007). Furthermore, in a 4 component system simulating one 

Hypericum fraction, these combined constituents (0.1 µM chlorogenic acid, 0.08 µM 

amentoflavone, 0.07 µM quercetin, and 0.03 µM pseudohypericin) inhibited lipopolysaccharide 

(LPS)-induced prostaglandin E2 level, the production of the pro-inflammatory cytokine tumor 

necrosis factor-a (TNF-a), and the anti-inflammatory cytokine interleukin-10 (IL-10) (Hammer 

et al., 2008). 

d. Anti -microbial activity of Hypericum perforatum 
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To investigate the antimicrobial activities of H. perforatum, different extracts 

(MeOH; petroleum ether; CHCl3 and EtOAc) were tested against selected microorganisms. 

Gram-positive bacteria, B. subtilis and B. cereus were the most susceptible to being inhibited by 

Hypericum extract. Hyperforin and hypericin were most active chemicals for antimicrobial 

property (Avato et al., 2004). In two earlier studies, hypericin had also been shown to have 

antimicrobial activity against Gram-positive bacteria and numerous viruses. This property was 

also attributed to the essential oils, phloroglucinols, and flavonoid constituents, and might 

involve a photoactivation process that disrupted certain components of the Golgi apparatus or 

endoplasmic reticulum (ER) (Lenard et al., 1993 & Weber et al., 1994). In a later study, a 

petrolether extract of Hypericum perforatum was found to be antimicrobially effective against 

Gram-positive bacteria with methicillin-restistant strains of Staphylococcus aureus (MIC values 

of 1.0 µg/ml). A butanol fraction of St. John's Wort had anti-Helicobacter pylori activity with 

MIC values ranging between 15.6 and 31.2µg/ml (Reichling et al., 2001). Also several bacterial 

species of Staphylococcus aureus, Candida albicans, Bacillus subtilis and Escherichia coli were 

inhibited by the degradation products of hyperforin, including furohyperforin, furohyperforin A, 

pyranohyperforin (Vajs et al., 2003). Recently, the two H. perforatum subspecies in central Italy 

were particularly active against Gram-positive (Staphylococcus aureus and Enterococcus 

faecalis), two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and the 

yeast Candida albicans via the Kirby-Bauer agar diffusion method (Cecchini et al., 2007).    

e. Antioxidant activity of Hypericum perforatum 

Hypericum perforatum has been shown to possess a certain antioxidant activity in 

vitro (Couladis et al., 2002 & Benedí et al., 2004). Also hyperforin and hypericin have been 

reported to protect against oxidative damage in neuronal cells (Park et al., 2002). However, in 

another study, fractions containing flavonoids and/or caffeoylquinic acids were found to be the 

main contributors to the free radical-scavenging activity of ethanolic extract of Hypericum 

perforatum, in which lipid peroxidation-induced by ascorbate/Fe2+ was significantly reduced in 

Hp (EC50=26 µg dwb/ml). Hypericins and hyperforins had no significant contributions to the 

antioxidant properties of Hp (Silva et al., 2005). Hp had significant DPPH radical-scavenging 

activity (Cakir et al., 2003) and free radical scavenging properties in cell-free and human 

vascular systems (Hunt et al., 2001).  
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To test the free radical scavenging and antioxidant activities of Hypericum perforatum, 1 

and 50 µg/ml of Hp effectively inhibited lipid peroxidation of rat brain cortex mitochondria 

induced by Fe2+/ascorbate or NADPH system. 1,1-diphenyl-2-picrylhydrazyl stable free radical 

(DPPH) scavenging for Hp was shown with a dose-dependent manner. However, the hydroxyl 

radical scavenging was occurred at high doses. In a pheochromocytoma cell line PC 12 using 8-h 

cell exposure to H2O2 (300 µM), 0.1-100 µg/ml of Hp decreased the caspase-3 activity and 

suppressed the H2O2 -induced reactive oxygen species generation (Benedí et al., 2004). 

f. Hypericum perforatum and Cancer cells 

             In plant-derived antitumor agents, St. John’s wort was used in some trials because of 

its significant antitumor activity without many side effects. Some studies have shown that the 

antitumor properties of Hp were attributed to naphthodianthrone, hypericin, which is a powerful 

photosensitizer. Its use in photodynamic therapy for cancer patients had gained researcher 

attention (Agostinis et al., 2002). Once taken up by tumor cells, hypericin reacted in the presence 

of oxygen and activated multiple apoptosis pathways that resulted in malignant cell death 

(Thomas et al., 1992).  Inhibition of mitochondrial succinoxidase was occurred by hypericin via 

singlet-oxygen generation and was found to be drug-dose, light-dose, and wavelength dependent 

(Hadjur et al., 1995). In in vitro study, hypericin-induced phototoxicity was dependent on 

oxygen in EMT6 mouse mammary carcinoma cells (Thomas et al., 1992). Hyperforin has also 

been investigated to possess antitumor effects in animals and in vitro studies (Schempp et al., 

2002). Rat and human mammary cancer, squamous cell carcinoma, malignant melanoma, as well 

as lymphoma cells were found to be inhibited by hyperforin as dose dependent manner. This 

study had revealed that hyperforin might induce tumor cell apoptosis via activation of 

mitochondria, release of cytochrome C, and caspase activation to trigger cell death pathways. 

Another type cell, prostate cancer cell, was also inhibited by Hypericum perforatum. Hp 

components (containing 0.3% hypericin and 3.8% hyperforin) acted as serotonin-reuptake 

inhibitors and exerted cytotoxic effects in Caucasian prostate adenocarcinoma cell and athymic 

male nude mice. This study highlighted a significant reduction of tumor growth and number of 

metastasis for Hp in prostate cancer (Martarelli et al., 2004). Commercial Hypericum perforatum 

preparation had potential to inhibit CYP1A1-catalyzed benzo (a) pyrene epoxidation, which 

produced the terminal reaction to the ultimate carcinogenic product (diolepoxide 2). The 
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inhibitory potencies were shown at IC (50) values of 0.5 µM (hypericin), 1.2µM (hyperforin), 

1.5µM (quercetin), and 8µM (pseudohypericin) (Schwarz et al., 2003).    

B. Bioavailability of Hypericum perforatum 

Bioavailability of Hypericum perforatum extracts study 

Bioavailability of Hypericum perforatum extracts with their constituents were well 

studied compared with Echinacea purpurea. Most of these were oral administration trials. In an 

earlier animal study, hyperforin in Hypericum perforatum extracts was measured in plasma when 

rats were administrated orally 300 mg alcoholic Hp (5% hyperforin), the maximum plasma level 

was 370 ng/ml which was reached after 3 h. If using film coated tablets containing 300 mg 

Hypericum extracts (14.8 mg hyperforin), the maximum plasma level of approximately 150ng/ml 

was reached 3.5 h after administration (Biber et al., 1998). To determinate hyperforin and 

hypericin plasma concentration in human, alcoholic Hypericum extracts (300 mg, containing 5% 

hyperforin and 0.3 % hypericin) were administered by 12 healthy people in the morning after 12 

hours fasting as soft gel and hard gelatin capsules. Cmax value of hyperforin was 168.35ng/ml 

(soft gel) and 84.25ng/ml (hard gelatin). The Tmax (time to reach Cmax) value for hyperforin 

was 2.50 h (soft gel) and the total AUC was 1482.7 h x ng/ml, whereas for hypericin, plasma 

levels were just detectable in half of the subjects (Agrosi et al., 2000). However, another trial 

with oral 612 mg Hypericum extracts in 18 healthy male volunteers for 14 days, hypericin was 

measurable as Cmax (3.14 ng/ml), Tmax (8.1 h), AUC (75.96 h x ng/ml). And similar results 

were shown that hyperforin Cmax was 83.5 nglml, Tmax was 4.4 h, and AUC (1009.0 h x 

ng/ml). Furthermore, the other three constituents were also reported as pseudohypericin Cmax 

(8.50 ng/ml), Tmax (3.0 h), and AUC (93.03 h x ng/ml); Quercetin Cmax (47.7 ng/ml) and Tmax 

(1.17 h); isorhamnetin Cmax (9.0 ng/ml) and Tmax (6.42 h) (Schulz et al., 2005a). Schulz et al. 

at same year also reported the five compounds for pharmacokinetic study in 18 healthy male 

volunteers with different dose of 900 mg dry St John's wort extract. The data corresponded well 

with values first published (Schulz et al., 2005b).  

Bioavailability of individual compound in Hypericum perforatum 

The other compounds, rutin and quercetin, in Hypericum perforatum were also studied 

for bioavailability issue in animal models. Two groups of 0.4% rutin and 0.2% quercetin semi-
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purified diets were fed in ninety male Wistar rats for 10 days. The plasma concentrations at 24 h 

were 35 µM rutin (0.4% rutin group) and 51 µM quercetin (0.2% quercetin group) after the first 

meal. The quercetin plasma concentration at 24 h in 0.4% rutin feeding group was 36 µM. Rutin 

was absorbed more slowly than quercetin because it must be hydrolysed by the cecal microflora, 

whereas quercetin was absorbed from the small intestine. Further, conjugated derivatives of 

quercetin, and its methylated forms isorhamnetin and tamarixetin, were also recovered in plasma 

from rats receiving the two kinds of experimental diets after the first meal (Manach et al., 1997). 

Also in another rat study, the bioavailability of quercetin and rutin (quercetin-3-rutinoside) was 

assessed in in vivo with single-meal experiments and in vitro method with ligated loops of rat 

small intestine. Rutin was more slowly absorbed than quercetin. Absorption of both quercetin 

and rutin from the small intestine of rat was evident. Experiments with [14C] quercetin showed 

that only 1.5% quercetin crossed the gut wall in vitro and more than half of the total quercetin 

was bound to the small intestinal tissue (Carbonaro et al., 2005). 

In human studies, from a double blind, diet-controlled and cross-over trial, 16 healthy 

volunteers received orally for three different quercetin and rutin doses which corresponded to 8 

mg, 20 mg and 50 mg quercetin aglycone. No rutin was detected. Both quercetin and rutin 

treatments were found in plasma as glucuronides/sulfates of quercetin and as unconjugated 

quercetin aglycone. The maximum plasma concentration (Cmax) values of quercetin in two 

treatments for three doses were similar (Erlund et al., 2000). The similar results were found in 

another human study. To determine the influence of the sugar moiety or matrix on the quercetin 

absorption, four groups of quercetin-4'-O-glucoside and onion supplement (both equivalent to 

100 mg quercetin), as well as quercetin-3-O-rutinoside (rutin) and buckwheat tea (both 

equivalent to 200 mg quercetin) were administered to 12 healthy volunteers in a four-way 

crossover study. Only plasma quercetin glucuronides, but no free quercetin was detected. There 

was no significant difference in the quercetin (QU) plasma concentrations between the quercetin-

4'-O-glucoside (2.1µg/ml QU) and onion (2.3µg/ml QU), as well as between rutin (0.3µg/ml QU) 

and buckwheat tea (0.6µg/ml QU). The different plant sugar moiety influenced quercetin 

bioavailability because the site of absorption might be different for quercetin-4'-O-glucoside and 

quercetin-3-O-rutinoside (Graefe et al., 2001).   
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C. Metabolism of Hypericum perforatum 

Cytochrome P450 induction or inhibition activities of of Hypericum perforatum 

Hypericum perforatum has been reported to interact with several cytochrome P450 (CYP) 

families which are hepatic drug-metabolism enzymes. Using a probe drug cocktail in 12 healthy 

subjects with 3-period open-label study, tolbutamide (CYP2C9), caffeine (CYP1A2), 

dextromethorphan (CYP2D6), oral midazolam (intestinal wall and hepatic CYP3A) were 

administered with 2 weeks of intake (Hp 900 mg daily) to determine CYP activities. St John's 

wort administration increased oral clearance of midazolam and declined oral bioavailability, as 

well as AUC was decreased at >50% when midazolam was administered orally. There was no 

change in CYP1A2, CYP2C9, or CYP2D6 activities as a result of St John's wort administration. 

St John's wort administration only resulted in a significant and selective induction of CYP3A 

activity in the intestinal wall (Wang et al., 2001). On the other hand, Hypericum perforatum 

compound metabolism were also changed when added cytochrome P-450 inhibitor or inducer. In 

a placebo-controlled, double blind study, 33 healthy volunteers were randomized into three 

treatment groups that received Hp extract with different groups (placebo, cimetidine, and 

carbamazepine) for 7 days. Hypericin AUC was increased from 119 µg h/l to 149µg h/l with 

cimetidine because cytochrome P-450 was inhibited, whereas pseudohypericin AUC was 

decreased from 51.0 µg h/l to 36.4µg h/l with carbamazepine because cytochrome P-450 was 

activated compared to the baseline pharmacokinetics in each group (Johne et al., 2004). In 

another human study, St John's wort also showed to activate cytochrome CYP3A and MDR1. 

Twelve days pretreatment with St John's wort on the disposition of probe drugs in 21 young 

healthy subjects, oral administration of midazolam was used to assess CYP3A activity in both 

the intestinal epithelium and the liver; oral fexofenadine was assumed to be a measure of MDR1 

function. St John's wort significantly increased both of the drugs with associated their clearance 

(Dresser et al., 2003). 

In a cell culture model, the main constituents of Hypericum perforatum extract, 

hyperforin and hypericin, were also identified if affecting the drug-metabolizing enzymes or not. 

For the induction or inhibition effects of the constituents on CYP3A4, CYP1A2, CYP2C9, and 

CYP2D6 in the human hepatocyte model, hyperforin resulted in significant increases in mRNA 

and activity of CYP3A4 and CYP2C9; whereas, hypericin had no effect on any of the enzymes 
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used. These results demonstrated that some compounds might play an important role in inductive 

effect of Hp extracts on drug-metabolizing enzymes (Komoroski et al., 2004). 

In a summary, from the studies selected throughout Hypericum perforatum review, the 

compositions of Hypericum perforatum were different depending on the preparation methods 

and herbal locations. The main compounds included hyperoside, quercetin, rutin, biflavonoids 

(amentoflavone), chlorogenic acid, and pseudohypericin. Hypericum perforatum were 

recommended for treating depression. Different species of Hp possessed an effective anti-

inflammatory activity, anti-microbial activity and antioxidant capacity. Also Hypericum 

perforatum was believed to inhibit the cancer cells in many different cell lines, which was 

contributed by the different active compounds. Hp was detected in both culture models and 

human studies as different individual compound as well as their metabolites. Hypericum 

perforatum also interacted with cytochrome P450 as results in both induction and inhibition 

activities. However, the mechanism of metabolism, anti-inflammatory activity and anti- 

microbial activity remain unclear. Further study related to these areas will be needed. 

IV. OVERALL INTRODUCTION OF CAFFEIC ACID 

A. Analysis of caffeic acid in fruits, vegetables and Echinacea purpurea  

         Caffeic acid (3,4-dihydroxycinnamic acid), one of the most common phenolic acids, 

frequently occurs in fruits, grains and dietary supplements for human consumption as simple 

esters with quinic acid or saccharides, and are also found in traditional herbs. Phenolic acids 

include derivatives of hydroxybenzoic and hydroxycinnamic acids with hydroxycinnamic acids 

being the more common. Hydroxycinnamic acids mainly consist of p-coumaric, caffeic, ferulic, 

and sinapic acids when caffeic acid, both free and esterified (Figure 2.3), is generally the most 

abundant phenolic acid and contains from 75% to 100% of the total hydroxycinnamic acid 

content of most fruit. Chlorogenic acid is combined from caffeic and quinic acids in coffee and 

many types of fruit, such as blueberries, kiwis, plums, cherries, apples (Clifford, 1999).  

             Some studies have shown that caffeic acid is the main phenolic acid aglycone in 

potatoes, with contents varying from 0.3 to 3.6 mg/100 g and 18.8 to 28 mg/100 g in tubers and 

peels, respectively (Radtke et al., 1998; Mattila et al., 2002). A recent published study showed 

the chlorogenic acid was widely distributed and present in 175 apple varieties and determined the 
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mean chlorogenic acid content was 70.7µg/g and the maximum value for chlorogenic acid was 

396.9µg/g in apple juice collected from approximately 12 countries and several USA 

geographical areas (Eisele et al., 2005). Another investigated study showed the distribution and 

contents of phenolic acids in a wide range of vegetables consumed in Finland. The data indicated 

that caffeic acid was the most dominant phenolic acid aglycone in the samples studied. Highest 

contents of soluble phenolic acids were found in raw and cooked potato peels: 23-45 mg/100 g 

fresh weight calculated as aglycones (Mattila et al., 2007). Total caffeic acid contents in potato 

samples (Solanum tuberosum) as aglycones for potato/timo cooked and potato/siikli cooked were 

14±1.2 and 12±0.90 mg/100 g fresh weight, separately (Mattila et al., 2007).    

 

Figure 2.3. The structure of Cinnamic acid, Caffeic acid and Caffeic acid phenethyl ester 
(CAPE) 

               One study was done in China to analyze the natural change of active components of E. 

purpurea by measuring content of cichoric acid. The results were shown that the maximum 

content of cichoric acid above ground occured in the blooming stage of mid July (Wang et al., 

2002). Cichoric acid (19.21 mg/g dry biomass), caftaric acid (3.56 mg/gdry biomass), and 

chlorogenic acid (0.93 mg/gdry biomass) were found in inoculation of leaf explants of Echinacea 

purpurea (Moench) with Agrobacterium rhizogenes. These results demonstrated that the 

biosynthetic pathway might be feasible to produce biologically active caffeic acid derivatives in 

heterotrophical culture (Liu et al., 2006). Different Echinacea extracts which were obtained from 

the North Central Regional Plant Introduction Station (NCRPIS) (Ames, IA) of the USDA were 

analyzed by HPLC to identify the concentrations of known constituents. The different accessions 
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and harvest years of species included E. angustifolia, E. sanguinea, E. purpurea, and E. 

tennesseensis which contained greater quantities of Bauer alkamides than of ketones or caffeic 

acid derivatives (LaLone et al., 2007). From the earlier NCRPIS Annual Report (2004), the 

concentrations of caffeic acid extracted from Echinacea roots including E. angustifolia, E.  

purpurea, E. pallida were from 0.10 to 0.21 mg/g dry root. Many factors affected the level of 

these phenolic compounds including seasonal variations, drying methods, extraction methods, 

and growing location of the plant. Recently, in some other reports, by calculating individual 

phenolic compound/dried plant material, the percentage of caffeic acid in E. purpurea extracts 

was 0.6-1.1%; and cichoric acid (3.5-5.7 %) and caftaric acid (3.1-4.5 %) were also the main 

phenolic compound of total polyphenols of 7.9-10.9% (Iranshahi et al., 2008). 60% ethanol at 

60°C was found to be suitable for the extraction of the active ingredient yields of phenolics (53.4 

mg/g  dry weight), caftraric acid (3.6 mg/g DW), and  chichoric acid (28.8 mg/g DW) from dried 

adventitious roots of Echinacea purpurea obtained in bioreactor cultures in South Korea (Wu et 

al., 2008).    

B. Daily intake of caffeic acid  

           Regarding the daily intake of caffeic acid, some studies have reported on the general 

population. Estimation of dietary intake is particularly difficult because of partial availability of 

food composition data and dietary assessment methods. Regular coffee consumers generally 

ingest 0.5–1 g chlorogenic acid/d and are equal to about 250–500 mg caffeic acid/d (Clifford et 

al., 1999). A German study estimated daily consumption of hydroxycinnamic acids and 

hydroxybenzoic acids at 211 and 11 mg/d, respectively. For certain polyphenols consumed daily 

including flavonols and flavones, catechins, and isoflavones, have been found on the food 

analysis (Radtke et al., 1998). The results showed that the daily consumption of caffeic acid 

intake was 206 mg/d, and the principal sources were coffee (92% of caffeic acid) and fruit and 

fruit juices combined (Radtke et al., 1998). The useful biomarkers of urinary flavonoids for 

intake may help to estimate dietary intake and showed the coffee consumption was positively 

correlated to caffeic and chlorogenic acids (Mennen et al., 2006).  
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C. Bioavailability of caffeic acid 

Many studies have been done about the bioavailability of chlorogenic acid and caffeic 

acid in gut. Based on a human study, only one third of chlorogenic acid was absorbed in the 

small intestine of humans when almost all of the caffeic acid was absorbed in the ileostomy 

subjects ingested 2.8 mmol chlorogenic acid and 2.8 mmol caffeic acid for 24 h (Olthof et al., 

2001). In contrast with intake of pure caffeic acid, better absorption in the small intestine, was 

associated with a higher plasma concentration and urinary excretion of intact caffeic acid and its 

tissular metabolites in humans (Olthof et al., 2001). 

In another human study, five healthy males consumed 100, 200, and 300 mL of red wine 

corresponding 0.9, 1.8, and 2.7 mg of caffeic acid, respectively. Plasma concentration were 

measured at different times (0−300 min) for evaluating the antioxidant effect of caffeic acid. 

Plasma samples were prepared by HCl-hydrolysis method through Sep-Pak C18 cartridge and 

analyzed by HPLC. The method of plasma total radical-trapping antioxidant parameter (TRAP) 

was determined for antioxidant potential of caffeic acid. Plasma concentrations of caffeic acid 

and antioxidant property were dose-dependent and the Cmax was reached at about 60 min after 

red wine intake. At this time point, plasma caffeic acid concentrations were 1.19, 3.23, and 4.90 

ng/mL for each group. And the antioxidant parameters were 6.0, 19.6, and 25.4 % variation of 

TRAP. Caffeic acid was bioavailable and was correlated with the antioxidant potential of red 

wine intake (Simonetti et al., 2001).  

Coffee was one of the most popular sources to investigate the bioavailability and 

metabolism of caffeic acid derivative studies. Five nonsmoking healthy male volunteers were 

administered two cups of coffee containing 4 g of instant coffee powder. The results showed a 

highly significant increase in the urine cumulative excretion of isoferulic, ferulic, and 

dihydroferulic acid ranging from 1.9 to 15.1 mg. 3-Hydroxyhippuric acid was increased as 102.9 

mg in postsupplementation (Rechner et al., 2001).    

Most of caffeic acid was present in plasma as the glucuronate/sulfate forms. Plasma 

caffeic acid was derived from hydrolysis of chlorogenic acid in the gastrointestinal tract when 

drinking the no free caffeic acid coffee (Nardini et al., 2002). Ten healthy male nonsmoker 
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moderate-coffee drinkers were asked to administer a standard 200 mL brewed coffee 

(corresponding 166mg caffeic acid) which only contained 478.9 µg/mL chlorogenic acid in 

original nonhydrolyzed coffee when caffeic acid was undetectable. If hydrolyzed, no chlorogenic 

acid and only 830.0µg/mL caffeic acid and small amount of p-coumaric acid and ferulic acid 

were found in hydrolysis solution. Plasma samples were collected 1 and 2 h after coffee 

administration for analyzing free and total phenolic acid content. Caffeic acid was the only 

phenolic acid found in plasma samples after coffee administration, while chlorogenic acid was 

undetectable. One hour after coffee consumption, free plasma caffeic acid level was 20.9 ng/mL, 

whereas 91.1 and 91.3 ng/mL were found with β-glucuronidase treatment and alkaline hydrolysis 

(Nardini et al., 2002).  

However, in another human study, chlorogenic acid was detectable in human plasma 

and urine after acute coffee consumption. To determine the plasma distribution of the main 

chlorogenic acid isomers and metabolites, six healthy adults consumed a standard amount (190 

mL) of brewed coffee which contained 2928 µmol/190 mL caffeoylquinic acid (CQA), a main 

composition of chlorogenic acid isomers. Pharmacokinetic parameters of CQA and caffeic acid 

were identified in plasma for 4 h after coffee consumption. The CQA Cmax was 4.89µmol/L and 

Tmax was 2.25 h; caffeic acid Cmax was 1.56µmol/L and Tmax was 1.42 h. The urinary 

concentrations of caffeic acid were identified in each subject during 2 h after coffee consumption 

and the ranging was 0.37 to 1.57 mmol/mmol creatinine (Monteiro et al., 2007).   

In animal studies, the bioavailability of chlorogenic acid and caffeic acid were studied 

with different dosages to obtain plasma pharmacokinetic profiles of their metabolites. One earlier 

rat study, using 700 µmol/kg body weight of chlorogenic or caffeic acid and collecting blood 

from the tail for 6 h after administration, the results were reported that no chlorogenic acid was 

absorbed from the alimentary tract, only traces of caffeic and ferulic acids conjugates were 

detected in rat plasma for 6 h after chlorogenic acid administration. On the other hand, after 

caffeic acid administration, not only free caffeic acid and ferulic acid were detected as 1.2 and 

1.6 µmol/L, respectively; caffeic acid glucuronides was main plasma metabolites 2 h after 

administration with a concentration of 26.1 µmol/L; caffeic acid sulfate/glucuronide conjugates 

was 12µmol/L (Azuma et al., 2000). However, in another animal model, chlorogenic acid was 

absorbed in the rat stomach with its intact form. With infusing chlorogenic acid in the ligated 
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stomach of food-deprived rat model to test gastric absorption of chlorogenic acid, intact 

chlorogenic acid was found in the gastric vein and aorta after 30 min of infusion (Lafay et al., 

2006a). When feeding rat as a diet supplemented with chlorogenic acid (0.25%, wt: wt), 

chlorogenic acid and its metabolites were estimated in the stomach, small intestine and cecal 

contents as well as in bladder urine and plasma by HPLC. The results were indicated that small 

amount of hydrolysis of chlorogenic acid (<1%) was occurred in the stomach and small intestine 

contents, whereas 15-32% of ingested chlorogenic acid was hydrolyzed into caffeic acid in the 

cecum (Lafay et al., 2006a). 

One another animal study in rats (250µmol/d chlorogenic acid for 8 d) have reported 

that the urinary recovery of chlorogenic acid was low (0.8%, mol/mol); and the total urinary 

excretion of caffeic acid released from chlorogenic acid was less 0.5% (mol/mol) of the dose 

ingested. Most parts were microbial metabolites in both urine and plasma including m-coumaric 

acid and derivatives of phenylpropionic, benzoic and hippuric acids (57.4% mol/mol) in rats. 

That was concluded high abundance of microbial metabolites resulted from gut microflora 

metabolism of chlorogenic acid (Gonthier et al., 2003). The same rat study with 250µmol/d 

caffeic acid for 8 d, total urinary excretion of caffeic, ferulic, and isoferulic acids was 28.1 % of 

intake (mol/mol); urinary 3-hydroxyphenylpropionic acids (3-HPP) was 4.0 %. Plasma 

metabolite concentrations in rats fed caffeic acids for 8 d were caffeic acid as 41.3µmol/L, 

ferulic acid as 7.3 µmol/L, and 3-hydroxyphenylpropionic acid as 1.4µmol/L (Gonthier et al., 

2003).  

One study was compared to rosmarinic acid in animal model. Both of 100 µmol/kg BW 

of caffeic acid (CA) and rosmarinic acid (RA) were fed to male Wistar rats by gastric intubation. 

The serum concentration of intact CA and RA in the portal vein peaked at 10 min after 

administration were quantified by a coulometric detection method using HPLC-ECD, with a 

C(max) of 11.24 µmol/L for CA and 1.36 µmol/L for RA. The area under the curve (AUC) for 

intact CA and RA was calculated from the serum concentration-time profile as 585.0 and 60.4 

µmol min /L. The absorption efficiency of CA was about 9.7-fold higher than that of RA. And 

the concentrations of CA and RA glucuronide were 30 and 0.8 µmol /L, respectively (Konishi et 

al., 2005).  
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To determine whether chlorogenic acid was directly absorbed or hydrolysed in the small 

intestine. Individual chlorogenic and caffeic acids were perfused into a segment of ileum plus 

jejunum during 45 min using an in situ intestinal perfusion rat model. The net perfused 

absorption accounted for 8 % chlorogenic acids and 19.5 % caffeic acid. Part of the chlorogenic 

acid (1.2 % of the perfused flux) was recovered in the gut effluent as caffeic acid because of 

trace esterase activity in the gut mucosa. No chlorogenic acid was detected in either plasma or 

bile. The results showed that chlorogenic acid was absorbed and hydrolysed in the small intestine 

(Lafay et al., 2006b).    

D. Metabolism of caffeic acid 

Metabolism of caffeic acid by Phase I &II enzymes 

In an earlier study with isolated perfused rat liver to investigate the mode of 

biotransformation of caffeic acid, the main results were shown that the first-pass effect was small 

due to 93.3% of unchanged caffeic acid after one liver passage. Phase I products of caffeic acid 

oxidation (cyclolignan) and cyclization product (esculetin) as well as Phase II methylation 

products (ferulic and isoferulic acid) were found in the perfusion medium. Also the other Phase 

II conjugation products (mainly glucuronides/sulfates of caffeic acid) were determined in bile 

(Gumbinger et al., 1993). To compare the Phase I products of caffeic (CA), dihydrocaffeic 

(DHCA), and chlorogenic (CGA) acids, using rat hepatocyte microsomes and 

dihydroxycinnamic acids oxidation assay, the results showed that dihydroesculetin, p-quinone, 

and hydroxylated dihydrocaffeic acid were main products oxidized by peroxidase/H2O2 or 

tyrosinase/O2 in rat liver where microsome catalyzed CA-, CGA-, and DHCA-glutathione 

conjugate formation (Moridani et al., 2001). Caffeicins-like structures, dimmers, and trimeric 

derivatives of caffeic acid were also formed by the tyrosinase-catalyzed oxidation method using 

high-performance liquid chromatography (HPLC) coupled to electrospray ionization mass 

spectrometry (ESI-MS) (Pati et al., 2006). Another Phase I products of caffeic acid oxidation 

study, the biotransformation of caffeic acid was catalyzed by peroxidase in H2O2/Momordica 

charantia assay. The isolation of nine caffeic acid trimers, dimers, and monomer was found in 

vitro and confirmed by 2D NMR measurement (Wan et al., 2008). 

To investigate the metabolism of caffeic acid in three enzymes including cytochrome 

P450 enzymes, catechol-O-methyltransferase (COMT), and beta-oxidation enzymes, caffeic 
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(CA), chlorogenic (CGA), and dihydrocaffeic (DHCA) acids were incubated with either 

hepatocytes or rat liver microsomes. The main results were shown that ferulic (FA) or 

dihydroferulic (DHFA) acids were formed as the result of CA- or DHCA-O-methylation by 

COMT and also O-demethylated by CYP1A1/2. The CA- and DHCA-o-quinones were formed 

by NADPH/P450 (Moridani et al., 2002). 

Metabolism of caffeic acid in cell cultures (HepG2 and Caco-2 cells) 

To investigate the bioavailability and metabolism of caffeic acid in cell culture, the 

most studies have used the HepG2 cell or Caco-2 as biotransformation models. One study was 

done to test the hepatic uptake and metabolism in human hepatoma HepG2 cells which were 

incubated for 2 and 18 h with caffeic, ferulic, and chlorogenic acids. The results were shown that 

the caffeic acid was moderate uptake and methylation/glucuronidation/sulfation were the main 

pathway for caffeic acid metabolism; ferulic acid underwent glucuronides as the only metabolites 

and more slowly metabolized by HepG2 cells; and chlorogenic acid had the lowest absorption 

due to the esterification of the caffeic acid moiety with quinic acid (Mateos et al., 2006).  

Some cell culture studies were shown that chlorogenic acid (CGA) and caffeic acid 

(CA) were absorbed by paracellular diffusion in human intestinal Caco-2 cells as well as CA had 

low affinity for monocarboxylic acid transporter (MCT). This resulted in the greater absorption 

efficiency of caffeic acid compared to chlorogenic acid (Konishi et al., 2004a). Caffeic acid was 

absorbed as 0.20 % and 1.57 % of initial CA in the basolateral phase with or without apical to 

basolateral proton gradient. More than 98% of apically loaded caffeic acid was retained on the 

apical side, suggesting CA was restricted by the tight junctions (Konishi et al., 2004a). 

Furthermore, the major metabolites of caffeic acid formed by gut microflora including m-

coumaric acid, m-hydroxyphenylpropionic acid (mHPP), and 3,4-dihydroxyphenylpropionic acid 

(DHPP) were transported by MCT via proton-coupled direction, in which the transport of m-

coumaric acid, mHPP, and DHPP was inhibited by an MCT substrate, whereas DHPP was 

mainly permeated across Caco-2 cells via the paracellular pathway (Konishi et al., 2004b).  

E. Antioxidative efficacy of caffeic acid 

      Reactive oxygen species (ROS), various forms of activated oxygen, are formed 

continuously in cells as a consequence of oxidative biochemical reactions. ROS include free 

radicals such as superoxide anion radicals (O2
−), hydroxyl radicals (OH) and non-free radical 



www.manaraa.com

34 

species such as H2O2 and singlet oxygen (O2). These molecules exacerbate factors in cellular 

injury and aging process (Halliwell and Gutteridge, 1989). ROS are harmful because of 

producing in excess under certain abnormal conditions including inflammation, ischemia and in 

the presence of catalytic iron ions. ROS may cause cellular damage via peroxidation of 

membrane lipids, sulfhydryl enzyme inactivation, protein cross-linking and DNA breakdown 

(Serarslan et al., 2007; Lee et al., 2008). Caffeic acid was found to significantly reduce tert-butyl 

hydroperoxide (t-BHP)-induced hepatotoxicity in a cultured HepG2 cell line as determined by 

cell cytotoxicity, and lipid peroxidation and reactive oxygen species (ROS) levels in a dose-

dependent manner (Lee et al., 2008). The free radical scavenging activity of these natural 

compounds was evaluated through their ability to quench the synthetic DPPH radical. This assay 

provided information on the reactivity of tested compounds with a stable free radical, 

independently of any enzymatic activity. Caffeic acid was shown to possess the DPPH radical 

scavenging action with a higher quenching efficiency (Kroon and Williamson, 1999; Gülçin et 

al., 2006).  

               In common with several other dietary polyphenols, caffeic acid and its esters 

chlorogenic and caftaric acids have free hydroxyl groups and acted as antioxidants in vitro 

(Foley et al., 1999; Baderschneider et al., 2001). Caffeic acid is a natural ingredient not only in 

coffee beans but also in apples, bell peppers, pears, and some herbs such as different species of 

Echinacea. Caffeic acid has a variety of biological activities including antioxidant, anti-ischemia 

reperfusion, anti-thrombosis, anti-hypertension, anti-fibrosis, antivirus and antitumor properties 

(Jiang et al., 2005). One study showed the antioxidant properties of the caffeic acid were 

evaluated by using different in vitro antioxidant assays. 10 and 30 µg/mL of caffeic acid showed 

68.2 and 75.8% inhibition on lipid peroxidation of linoleic acid emulsion. Caffeic acid was an 

effective 2-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, 1,1-

diphenyl-2-picryl-hydrazyl free radical (DPPH) scavenging, superoxide anion radical 

scavenging, total reducing power and metal chelating on ferrous ions activities (Gülçin et al., 

2006). To investigate the chain-breaking antioxidation mechanism of caffeic acid, the 

antioxidant reaction conditions were designed by using freshly purified ethyl linoleate (50 mM) 

as the oxidation substrate. The result was shown that a quinone derivative of methyl caffeate was 

produced a as an antioxidation product during the antioxidation reaction, which was identified by 
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(13)C NMR. Methyl caffeate showed a very strong antioxidant activty for the initial stage 

(Masuda et al., 2008).  

In animal studies, the antioxidant properties of caffeic acid have been also established. 

Oral administration of caffeic acid (12 mg/kg/BW) in rats for 45 days significantly reduced the 

severe oxidative stress in alcohol toxicity as evidenced by the decrease in the levels of lipid 

peroxidation with a simultaneous increase in the level of superoxide dismutase (SOD), catalase 

(CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and glutathione S-transferase 

(GST) in liver and kidney (Karthikesan and Pari, 2007). CAPE was shown to significantly 

attenuate the intravenous LPS-induced TNF-α and IL-1β concentration and inhibit LPS-induced 

nuclear transcription factor-κB (NF-κB) activation in mice. It also down-regulated matrix 

metalloproteinase-9 (MMP-9) activity triggered by LPS in mouse lung (Jung et al., 2008). To 

examine the effects of CAPE on antioxidant parameters and colitis induced by trinitrobenzene 

sulfonic acid (TNBS) in bilateral ovariectomized Wistar Albino rats. Treatment with CAPE 10 

and 30 mg/kg significantly reduced in colon injury in rats of the TNBS-colitis. The levels of 

malondialdehyde (MDA), catalase and reduced glutathione (GSH) were increased from the level 

10 mg/kg in colitis rats (Ek et al., 2008).     

F. Antiinflammatory effects of caffeic acid 

Caffeic acid phenethyl ester (CAPE) is known to have antimitogenic, anticarcinogenic, 

antiinflammatory, and immunomodulatory properties (Michaluart et al., 1999; Orban et al., 

2000), and a specific inhibitor of the transcription factor nuclear factor-κB (NF-κB) (Natarajan et 

al., 1996; Fitzpatrick et al., 2001; Abdel-Latif et al., 2005). 

Nuclear factor kappa-B (NF-κB) was a heterodimeric transcription factor with a 

pivotal role in orchestrating immune and inflammatory processes. An earlier cell culture model, 

solutions of CAPE and analogues were made at 25µg/mL to treat the human histiocytic cell line 

U937 cells. The result was shown that the activation of NF-κB by tumor necrosis factor (TNF) 

was completely blocked by CAPE in a dose and time dependent manner. CAPE also inhibited 

NF-κB activation induced by other inflammatory agents including phorbol ester, ceramide, 

hydrogen peroxide, and okadaic acid (Natarajan et al., 1996). CAPE induced apoptotic cell death 

in a dose-dependent fashion and to a similar extent in glucocorticoid-sensitive and -resistant cell 

line of lymphoid origin. CAPE decreased expression of cytosolic NF-kappaB and increased 
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nuclear translocation of NF-κB p65 subunit (Orban et al., 2000). In a rat model of carrageenin-

induced subcutaneous inflammation, local administration of CAPE resulted in increased 

leukocyte apoptosis and marked reduction in exudate leukocyte, neutrophil and monocyte 

concentrations at the inflammatory site (Orban et al., 2000). CAPE (6 µg/ml) had caused 

significant cytotoxicity and increased apoptosis in lung cancer cells (Chen et al., 2004). And no 

significant cytotoxicity was found in normal lung fibroblast cells compared with lung cancer 

cells (Chen et al., 2005) by treating exponentially growing cells for 1 h prior irradiation. CAPE 

treatment also significantly decreased the nuclear binding of NF-κB in lung cancer cells as 

compared with normal lung cells after 4 hour 9 Gy irradiation. For in vivo study, the mice were 

injected intraperitoneally with CAPE (10 mg/kg, solubilized in saline) 30 min before irradiation 

and once a day for 10 days after irradiation in 24 mice with 20 Gy irradiation. CAPE treatment 

decreased the expression of inflammatory cytokines including IL-1 alpha and beta, IL-6, TNF-

alpha and TGF- beta after irradiation (Chen et al., 2005). Severe sepsis induced with a cecal 

ligation and puncture (CLP) in forty Sprague Dawley rats was inhibited by CAPE (10 µmol/kg) 

injected intraperitoneally. CAPE was reported to reduce mortality in sepsis and to improve 

histopathologic variables best when it was administered after the onset of sepsis. Apoptosis, 

inducible nitric oxide synthase, and heat shock protein 70 evaluation were significantly 

decreased (Fidan et al., 2007). In another same sepsis model study, the CAPE treatment resulted 

in a significant decrease in serum leukocytes, glucose, serum alanine aminotransferase (ALT), 

aspartate aminotransferase (AST), creatinine, blood urea nitrogen (BUN) and plasma 

malondialdehyde (MDA) levels in the sepsis treated with CAPE group (Tekin et al., 2008).  

G. Caffeic acid and cancer cell biology 

 Some studies were done with cancer cell lines to investigate the biological activity of 

tumor growth inhibition. The synthesized caffeic acid phenethyl ester-like compounds were 

tested and reported the significant cytotoxicity on oral submucosus fibroblast (OSF), neck 

metastasis of Gingiva carcinoma (GNM), and tongue squamous cell carcinoma (TSCCa) cells. 

The results suggested that CAPE-like compounds may be potential chemotherapy agents against 

oral cancer (Lee et al., 2000). Caffeic acid phenethyl ester (CAPE) inhibited NFkappaB activity, 

activated Fas and  induced apoptosis in human breast cancer MCF-7 cells, then induced p53-

regulated Bax protein and activated caspases (Watabe et al., 2004). CAPE was a potent 
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antimetastatic agent which markedly inhibited the metastatic and invasive capacity of malignant 

cells. In human HT1080 fibrosarcoma cells, caffeic acid phenethyl ester (CAPE) had the effect 

on tumor invasion and metastasis by determining the regulation of matrix metalloproteinases 

(MMPs) as decreasing gene expression of MMPs (MMP-2, MMP-9, MT1-MMP), tissue 

inhibitor of metalloproteinase-2 (TIMP-2) and in vitro invasiveness of human fibrosarcoma cells 

(Hwang et al., 2005). Caffeic acid phenethyl ester inhibited cell growth, and induced G1 phase 

arrest and apoptosis in a dose-dependent manner in both HCT116 and SW480 cells (Xiang et al., 

2006). To investigate the mitogenic, cytoprotective, and antiapoptotic activities on PC12-AC 

cells, a clonal derivate of the PC12 rat adrenal pheochromocytoma cell line (ATCC), the 

concentration of 54 naturally occurring phenolics including caffeic acid around 0.6 to 7.3µmol/L 

were used in this assay because of the physiologically relevant levels of plasma phenolic 

concentration detected in individuals on high phenolic diets (Lotito and Frei, 2006). Caffeic acid 

was found to possess the antiapoptotic capacity at 5.6µmol/L. These findings demonstrated 

substantive mitogenic, cytoprotective, and antiapoptotic biological activities of plant phenolics 

on neoplastic cells at physiologically relevant dietary concentrations that should be considered in 

chemopreventive and chemotherapeutic strategies (Harris et al., 2007). 

Recently, in another cell line, human pancreatic cancer cells were chosen to investigate 

the activity of inducing apoptosis for caffeic acid by using a trypan blue dye exclusion test, 

observation of morphology, sub-G1 DNA content, annexin-V/PI staining, caspase-3 and caspase-

7 assay, and DNA agarose gel electrophoresis. CAPE (10µg/mL) resulted in marked inhibition of 

human pancreatic cancer cells as different evidence. And the data suggested that CAPE was a 

potent apoptosis-inducing agent together with mitochondrial dysfunction and activation of 

caspase (Chen et al., 2008). The modified resistant hepatocyte model was used to investigate the 

anticarcinogenic properties of CAPE in Fischer-344 rats with diethylnitrosamine (DEN) 

administration. CAPE treatment decreased gamma-glutamyl transpeptidase-positive (GGT+) 

staining of hepatocyte foci by 59% on day 25. The result suggested that CAPE modified the 

enzymatic activity of CYP isoforms which were involved in the activation of DEN, such as 

CYP1A1/2 and CYP2B1/2 (Beltrán-Ramírez et al., 2008).   
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H. Cardioprotective effects of caffeic acid  

Caffeic acid contained wine consumption may have a preventive role in 

cardiovascular disease by moderate chronic wine consumption (Bertelli et al., 2007). In rat 

models, administration of CAPE reduced malondialdehyde (MDA) production and prevented 

depletion of GSH content in oxygen free radical-mediated injury of the ischemic-reperfused (I/R) 

myocardium in rats (Ozer et al., 2005). Chronic moderate red or white wine intake substantially 

improved the LDL/HDL cholesterol ratio and enhanced LDL clearance rate from the blood on 

fasted and postprandial lipemia (Daher et al., 2006). Rabbits were injected with a solution of 

CAPE 60 min before (3 mg/kg ip) or 30 min after (15 mg/kg ip) to acute myocardial 

ischemia/reperfusion (I/R) injury. Infarct dimensions in the area at risk were reduced by 2-fold 

with CAPE treatment. The levels of cytosolic enzymes lactate dehydrogenase, creatine kinase 

(CK), and cardiac-specific troponin were significantly reduced in CAPE treatment. CAPE-

treated tissues displayed significantly less cell death due to inhibition of p38 mitogen-activated 

protein kinase activation and reduced DNA fragmentation associated with caspase activation 

(Tan et al., 2005). Also CAPE was shown to attenuate NO production, reduced apoptosis, and 

diminished serum CK activities as same ischemia/reperfusion (I/R) model in rat heart (Ince et al., 

2006; Ozyurt et al., 2006).   

I.  Mechanisms of DSS-induced animal colitis 

   Inflammatory bowel diseases (IBDs; e.g., Crohn’s disease, ulcerative colitis) models 

induced by enteric bacteria were well established (Hutto et al., 1998; Jergens et al., 2007). Colitis 

in mice was also induced by dextran sodium sulfate (DSS) in drinking water (Dieleman et al., 

1998) causing weight loss, diarrhea with blood and/or mucus, shortening of the colon, erosion of 

the mucosal epithelium, and acute neutrophilic infiltration (Stevceva et al., 1999). 

Some studies were conducted to elucidate the mechanisms of DSS-induced animal 

colitis models. Aberrant or exaggerated immune responses to bacterial antigens derived from the 

intestinal lumen have been thought to serve as key initiating event leading to the development of 

colitis (Mayer, 2000; Shanahan, 2002). Shortening of the large intestine was thought to be 

induced by the thickening of colon caused by edema and muscular hypertrophy, in which this 

phenomenon was usually observed in ulcerative colitis. Then diarrhea was caused due to 

shortening of the colon (Ciancio et al., 1992). DSS-induced colitis was characterized by multi-
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focal areas of mucosal erosion, colonic epithelial cell injury, and significant mucosal infiltration 

of neutrophils (Cooper et al., 1993). On the other hand, some studies showed the acquired 

immune response plays a central role in the chronic colitis induced by DSS. Epithelial restitution 

has been shown to be impaired by chronic immune activation (Murthy et al., 1993), while 

damage to the epithelium was a key feature of acute DSS-induced colitis, chronic lesions may be 

the result of exaggerated and prolonged immune activation within the mucosa (Dieleman et al., 

1998).             

                Recent studies showed the mechanism of DSS-induced colitis was related to the level 

of NF-κB expression. These results were determined by the temporal relationship between the 

activation of NF-κB and messenger RNA expression of upstream activators and downstream 

mediators of NF-κB action in rats administered DSS (Marrero et al., 2000). These studies 

involved to elucidate the expression of NK-1R, SP, TNF-α, IL-1β, VCAM-1, ICAM-1, E-

selectin, CINC-1, MIP-1α, and iNOS.  Furthermore, the expression of pro-inflammatory 

cytokines, chemokines, and adhesion molecules were increased in some investigation (Breider et 

al., 1997; Sasaki et al., 2000). These results demonstrated that enhanced colonic mucosal 

endothelial cell ICAM- expression was an early event in the inflammatory cascade of DSS-

induced colitis. IL-1beta and GRO/CINC-1 mRNA expression were increased while TNF-alpha 

mRNA expression was significantly decreased. Similar results were also indicated in human 

studies about NF-κB expression related to inflammatory bowel disease (IBD) (Neurath et al., 

1998; Schottelius et al., 2006). Crohn's disease (CD) and ulcerative colitis (UC) displayed high 

levels of NF-κB DNA-binding activity accompanied by an increased production of IL-1, IL-6, 

and TNFα in patient macrophages. NF-κB stimulated the proliferation of tumor cells and 

enhanced their survival through the regulation of anti-apoptotic genes. Another study showed 

caffeic acid phenethyl ester (CAPE) might possess a potent multiple immunomodulatory and 

antiinflammatory role due to the inhibiting of NF-κB activated by TNF, phorbol ester, ceramide, 

hydrogen peroxide, and okadaic acid in a dose- and time-dependent manner (Natarajan et al., 

1996). The preventive effect of CAPE in colitis was due to decreasing the NF-κB level 

(Fitzpatrick et al., 2001). The other mechanism may be related to cytokine expression in DSS 

colitis, a range dose of dietary rutin which prevented DSS-induced colitis and possible colorectal 

carcinogenesis was resulted from attenuation of pro-inflammatory production (TNF-α, IL-1β) 

(Kwon et al., 2005).  
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In a summary, from the studies selected throughout caffeic acid review, caffeic acid, 

one of the most common phenolic acids, frequently occurs in fruits, grains, herbs and dietary 

supplements. Regular coffee consumers generally ingest about 250–500 mg caffeic acid/d. 

Plasma Cmax of caffeic acid was reached at about 60 min after caffeic acid diet intake. 

Metabolites included isoferulic, ferulic, dihydroferulic acid, and 3-hydroxyhippuric acid in urine 

or plasma in postsupplementation. The total urinary excretion of caffeic, ferulic, and isoferulic 

acids was 28.1 % of intake. Most of caffeic acid was present in plasma as the glucuronate/sulfate 

forms. Chlorogenic acid was hydrolyzed to caffeic acid and chlorogenic acid was undetectable in 

the gastrointestinal tract when taking the chlorogenic acid supplementation. Caffeic acid was 

metabolized by Phase I &II enzymes. Some cell culture showed that chlorogenic acid (CGA) and 

caffeic acid (CA) were absorbed by paracellular diffusion in human intestinal Caco-2 cells and 

CA had low affinity for monocarboxylic acid transporter (MCT). Caffeic acid possessed 

antioxidative efficacy, anti-inflammatory, and cardioprotective effects. Some studies were shown 

that caffeic acid affected cancer cell lines with the biological activity of tumor growth inhibition. 

However, the mechanism of anti-inflammatory activity and bioavailability related efficacy 

remain unclear. The further study related to these areas will be needed.  

V. MICROBIAL METABOLISM OF PHENOLICS AND HEALTH SIGNIFICANCE  

A. Bioavailability of phenolics and gut microbial metabolism 

Bioavailability is defined as the proportion of a compound that appears in plasma over 

time and the proportion excreted in the urine and feces compared to the amount ingested, when 

the compound is administered orally. From a toxicological perspective then, bioavailability is a 

measure of the potential for entry of a chemical into sites of action and implies movement of a 

chemical into the systemic circulation because this is a good indication of the biologically 

effective dose. Casarett and Doull (2001) define bioavailability as the fraction of the oral dose 

that is absorbed. That means that bioavailability equals to mass of chemical absorbed compared 

with mass of chemical administered. 

Over the past ten years, Hendrich and co-workers indicated that a variety of factors 

affected bioavailability of isoflavones, the phenolics in soybean, in which the gut microbiota was 

an important controllable variable for bioavailability studied as a broaden range. The 
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bioavailability of isoflavone is complex and widened variability in response to dietary 

isoflavones. Many human studies and animal models have been established by Hendrich and co-

workers to study bioavailability of isoflavones. Some focused on understanding how isoflavones 

are metabolized in the body including plasma kinetics as well as urinary and fecal excretion. 

Xu et al. (1994) showed that daidzein is a more bioavailable soymilk isoflavone than 

genistein in adult women while glycitein was not measured. Xu et al. (1994) fed 12 women 3 

doses of isoflavones (2.5, 4.8 and 7.4 µmol/kg BW from soymilk powder; 44% genistein and 

56% daidzein). Plasma levels of daidzein and genistein were similar to each other at time 6.5 and 

24h following ingestion at all 3 doses. Urinary recovery of daidzein and genistein were 21% and 

9% of the ingested dose, respectively, and fecal excretion was 1-2% ingested dose. Based on 

urinary excretion, Xu et al. (1994) concluded that daidzein was more bioavailable than genistein. 

Soybean milk isoflavones seemed to be 85% degraded in the intestine. Daidzein may be 

sufficient to exert some health-protective effects. 

Xu et al. (1995) found that the efficiency of absorption of soymilk isoflavones varied 

from 13 to 35%, depending on individual gut microflora. Xu et al. (1995) performed a similar 

study to that of Xu et al. (1994) with three doses of isoflavones fed (3.4, 6.9 and 10.3 µmol 

isoflavones/kg body weight; n=7 women), but looked at the individual results and found that 2 

subjects had significantly higher fecal excretion of isoflavones compare to the 5 others (about 

6% vs. 0.6% of the ingested dose, respectively and regardless of the dose fed). 48 h urinary 

recovery was 16±4% and 10±4% of the ingested dose for daidzein and genistein, respectively in 

the 5 subjects with low fecal excretion. The two subjects with high fecal excretion had 32±5% 

and 37±6% urinary recovery expressed as a % ingested dose. As for plasma, subjects with high 

fecal and urinary excretion had plasma isoflavone level 2.5-fold higher compare to subjects who 

were low isoflavone excreters. This study established the principles of phenotypes of isoflavone 

bioavailability, in which people can be grouped as high apparent absorbers (high urinary, plasma 

and fecal isoflavone contents) or low apparent absorbers. Moreover, high apparent absorbers do 

not seem to have as much gut microbial activity degrading isoflavones, because they are excreted 

intact and in greater level in the feces those subjects. The role of the gut microflora in 

determining the extent of isoflavone bioavailability became then a factor that could not be 

overlooked. These two studies performed by Xu et al. (1994 & 1995) did not consider 

bioavailability of glycitein, a minor, but still important soy isoflavones.            
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   Zhang et al. (1999; erratum, 2001) indicated urinary daidzein excretion was the greatest 

among that of three isoflavones in moderate fecal degraders and glycitein bioavailability was 

similar to daidzein in humans. On the other hand, comparing with this present study with two 

other studies in our laboratory, glycitein bioavailability was greater than daidzein and genistein 

excretion in hamsters.  

    Hendrich et al. (2001) found that plasma daidzein and genistein concentration was 

negatively correlated with in vitro fecal daidzein and genistein disappearance rate constant (r = -

0.74, P = 0.04; r = -0.88, P = 0.01, respectively), supporting an important role for gut microbial 

activity in isoflavone bioavailability. Recently Zheng et al. (2003) demonstrated a relationship 

between isoflavone disappearance phenotypes and GTT and suggested that gut microorganisms 

may affect GTT. Among 35 Chinese vs. 33 Caucasian women, Chinese subjects who were low 

degraders of genistein had threefold greater bioavailability of genistein than Chinese high 

degraders. The Chinese who were low isoflavone degraders had the average GTT of 40 h vs. 65 

h for Chinese high degraders. Caucasian subjects, regardless of isoflavone degradation 

phenotypes, had GTT > 80 h, and less apparent isoflavone absorption than did the Chinese 

subjects who were low degraders of isoflavones. GTT may be a crucial determinant of human 

differences in isoflavone bioavailability. 

   In an animal study, Lee et al. (2005) fed pure synthetic daidzein, genistein, or glycitein 

to female Golden Syrian hamsters (11-12 weeks of age, 10 hamsters/treatment) for 4 weeks and 

reported the urinary isoflavone excretion was glycitein> daidzein>genistein 

(32.2%>4.6%>2.2%). Meanwhile, Renouf et al. (2006) showed similar data in feeding either 

1.18 or 1.77 mmol total isoflavones/kg diet to 19 one-year old hamsters for 10 d in both males 

and females. These results indicated that the microbes in hamsters seem to differ from those in 

humans. They reported similar isoflavone urinary excretion and gut microbial degradation 

patterns compare to humans in Golden Syrian hamster fecal and cecal microbial degradation of 

isoflavones. Daidzein excretion was significantly greater than glycitein and genistein excretion in 

urine and female urinary excretion was significantly greater than male. Therefore, this study 

established Golden Syrian hamsters as a potential animal model to be used instead of humans to 

study some chronic diseases which could not be induced in humans, such as cancer.  

Renouf et al. (2005) conducted two separate studies, one focusing on fecal (study #1, 

n=20/sex) and the other on cecal (study #2, n=10/sex) microbial degradation of isoflavones in 
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Golden Syrian hamsters. They reported that urinary excretion was significantly lower by 2-4 fold 

in males compared to females in both studies. In addition, females from study #1 had 

significantly greater urinary excretion levels of daidzein (44.2 ± 13.7% vs. 29.6 ± 13.4%), 

glycitein (31.4 ± 11.2% vs. 18.2 ± 8.0%) and genistein (26.7 ± 11.5% vs. 15.8 ± 9.4% ingested 

dose) compared to cecal study #2, respectively. Fecal isoflavone excretion was not significantly 

different between sexes or isoflavones (study #1) and showed extremely low levels of excretion 

(<0.5% ingested dose). In vitro fecal degradation rates from study #1 showed low degradation 

levels and no significant correlation between urinary and fecal isoflavone excretion. The most 

importance finding was that cecal isoflavone degradation rates (study #2) were much higher than 

fecal isoflavone degradation rates (study #1) and were statistical correlated with urinary 

excretion of daidzein (R = 0.90; p = 0.01) and genistein (R = 0.93; p = 0.004). They concluded 

that Golden Syrian hamsters displayed similar patterns of bioavailability of isoflavones 

compared to humans in terms of apparent absorption, urinary excretion and gut microbial 

degradation. Renouf et al. (2005) showed Bacteroides ovatus, Bacteroides acidifaciens, 

Eubacterium ramulus, Clostridium orbiscindens and Tannerella forsythensis were the major 

human gut microbial species that degraded isoflavones and established that Golden Syrian 

hamsters may be good models to study bioavailability of isoflavones and their possible health 

promoting effects. Renouf et al. (2005) identified high fecal isoflavone degradation rate to 

coincide with distinct fecal bacterial species. Fresh feces from 33 healthy adult subjects (20 men, 

13 women) were incubated anaerobically with isoflavones to assess degradation rates using 

HPLC. Fecal DNA was extracted, bacterial 16S rDNA sequences amplified by polymerase chain 

reaction (PCR) and separated by denaturing gradient gel electrophoresis (DGGE). Cluster 

analysis identified high and low degraders of daidzein, genistein and glycitein. DGGE analysis 

showed that high genistein degraders (n = 4; fecal degradation rate 1.47 ± 0.14h-1) shared 5 

bands of greater intensity than found in feces of low genistein degraders (n = 4; fecal degradation 

rate 0.146 ± 0.034 h-1) high glycitein degraders (n = 4; 0.574 ± 0.299h-1) also shared 5 bands of 

greater intensity than found in feces of low glycitein degraders (n = 4; 0.146 ± 0.034 h-1). They 

also showed concordance with known species from the Bacteroides and Prevotella genus as well 

as the Clostridiales order using sequencing of 16S rDNA from the bands of interest. After 

developing two in vitro systems, one rich (rumen fluid based brain heart infusion media) and one 

poor in nutrients (feces incubated overnight in brain heart infusion media), they identified 



www.manaraa.com

44 

Bacteroides ovatus, Bacteroides acidifaciens, Eubacterium ramulus, Clostridium orbiscindens 

and Tannerella forsythensis as the major human gut microbial species that degraded isoflavones 

under both nutrient rich and poor conditions, thus these species may be the most significant ones 

in degrading isoflavone in the human gut. They also concluded that bacterial species shared by 

both high and low degraders with greater amounts in high degraders may be predictors of gut 

microbial degradation and overall bioavailability of isoflavones. Secondary species that may be 

specific to each individual fecal isoflavone degradation rate may be of importance for assessing 

microbial activity and will deserve further attention.    

Ye et al. (2006) reported that apparent absorption of isoflavones varied greatly among 

individuals and was relatively stable within an individual. Fifty Golden Syrian hamsters were fed 

a high fat/casein diet (n = 10) or a high fat/soy protein diet (n = 40) for 4 wk. Two distinct 

urinary isoflavone excretion phenotypes were identified using a pairwise correlation plots 

analysis, or using a hierarchical cluster test. High isoflavone excreters showed significantly 

greater urinary isoflavones (p<0.05) than did low isoflavone excreters. High urinary isoflavone 

excreters had significantly less non-HDL cholesterol than did the low isoflavone excreters or 

casein-fed controls (p < 0.05). Urinary isoflavone excretion phenotypes predicted the 

cholesterol-lowering efficacy of soy protein. Isoflavone absorbability, probably due to gut 

microbial ecology, was an important controllable variable in studies of effects of soy protein on 

blood lipids.  

In a summary, our long-term goals are to establish a screening assay for dietary 

component microbial metabolism and to understand the relationship between the role of gut 

microorganisms and beneficial dietary compounds such as antioxidant phenolics that may be 

found in commonly used herbs and plant foods. Bioavailability of phenolics on plasma kinetics, 

urinary and fecal excretion is now well understood. For instance, isoflavone absorption is a fast 

process with a maximum plasma peak occurring within 12 h after ingestion. Only traces of 

isoflavone are excreted in the urine after 48 h; most of the isoflavone ingested are being excreted 

within 24-48h. From animal and human studies obtained until now, we believed that potential 

animal models could be used to study phenolic metabolism. At meantime, both humans and 

animals suggested that a great amount of phenolic disappear in metabolism. There is now good 

evidence that gut microbiota plays an important role in the process of metabolism. We now know 

that phenolic bioavailability varies greatly among individuals in terms of the amount of phenolic 
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degradation microbial species which are relatively stable within an individual. Inter-individual 

variability in phenolic bioavailability needs more investigation. 

B. Echinacea purpurea and Bacteria   

Echinacea purpurea was widely used in prophylaxis and therapy of various 

infections in animals and humans. E. extracts were thought to make immune system more 

efficient at attacking bacteria. To evaluate the cellular immunity related effect of Echinacea 

purpurea extract on the development of Pseudomonas aeruginosa infection in various strains of 

mice. Bany et al. (2003) reported that E. extracts feeding decreased bacteria number in liver of 

C57Bl/6 (susceptible strain) as well as B6C3F1 (relative resistant strain) mice. Echinacea 

feeding of the second relative resistant strain (BALB/c x C3H) F1 resulted in stimulation of 

granulocytes chemiluminescent and lymphocytes proliferative response (Bany et al., 2003). 

However, using plate culture microbiological methods, E. purpurea significantly increased total 

aerobic bacteria, Bacteroides group and Bacteroides fragilis in human gastrointestinal (GI) tract 

after fifteen human subjects consumed 1000 mg of standardized E. purpurea for 10 days (Hill et 

al., 2006), whereas Bacteroides was shown to associate with diarrhea, inflammatory bowel 

disease and increased risk of colon cancer (Basset et al., 2004; Malinen et al., 2005). Recently, 

various E. extracts were shown to inhibit selective five bacteria (Streptococcus pyogenes, 

Haemophilus influenzae, Legionella pneumophila, Clostridium difficile, and Propionibacterium 

acne) and two pathogenic fungi which were related to upper and lower respiratory infections 

including sinusitis, bronchitis, pharyngitis, tonsillitis, and pneumonia, as well as cutaneous 

infections (Sharma et al., 2008). In a summary, E. extract inhibition of bacteria still is 

controversial issue because some bacteria which were related to upper and lower respiratory 

infections were inhibited in animal models and cell culture, whereas total aerobic bacteria, 

Bacteroides group and Bacteroides fragilis in human gastrointestinal (GI) tract were grown well 

using plate culture microbiological methods, 

C. Hypericum perforatum and Bacteria 

Rutin was absorbed as quercetin because it was hydrolysed by the cecal microflora 

from rats receiving the different experimental diets (Manach et al., 1997). Within 24-48 h of 

incubation, using a new in vitro model system the deglycosylation of rutin and the degradation of 
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its aglycone quercetin were investigated by fresh pig caecal inocula and 6 wk/5 months frozen 

inocula. The pattern of quercetin and rutin degradation products was similar in both approaches. 

And reported that the preservation of the microbial vitality and the metabolic efficiency by fresh 

or freeze-preparation were independent in time and locality (Keppler et al., 2006). For studying 

the metabolism of flavonoids by the intestinal microbiota, in vitro model system of intestinal 

microbiota was developed from the cecum of freshly slaughtered pigs to investigate the 

microbial deconjugation and degradation of several flavonols and flavonol glycosides (Keppler 

et al., 2005). In this model system, the microbiota was directly isolated from the cecal lumen of 

pigs which was identified by fluorescence in situ hybridization (FISH) with 16S rRNA-based 

oligonucleotide probes and confirmed the suitability for studying metabolism by the human 

microbiota (Hein et al., 2008). The microbial degradations of quercetin with different aglycones, 

sugar moieties, and types of glycosidic bonds were investigated. The main results were 

concluded that the glycosides were almost completely metabolized by the intestinal microbiota 

within 20 min and 4 h depending on the sugar moiety and the type of glycosidic bond. The 

structure of the aglycone had not influenced the intestinal metabolism. The liberated aglycones 

were completely metabolized within 8 h (Hein et al., 2008).  In a summary, the bioavailability of 

flavonoids in Hp was influenced by the metabolism of intestinal microflora in culture models.  

D. Metabolism of caffeic acid in bacterial models 

Caffeic acid was shown to be metabolized by the intestinal microbiota of human and 

experimental animals and some bacteria isolated from human feces (Peppercorn et al., 1971; 

Olthof et al., 2001; Gonthier et al., 2003). In earlier study, the basic growth media of both Thiol 

Broth (Difco) and Beef (Difco) were used at 370C under anaerobic conditions for transformation 

of caffeic acid in mixed cultures of feces or individual bacteria. Two main metabolites of 3-

hydroxyphenylpropionic acid (3-HPP) and 4-ethylcatechol were detected in mixed cultures of 

fecal incubation. In some organisms with pure culture or mixed cultures, Peptostreptococcus sp. 

and Clostridium perfringens were capable of reducing caffeic acid. In mixed culture, Escherichia 

coli and Streptococcus fecalis were required for the dehydroxylation of 

dihydroxyphenylpropionic acid (dihydrocaffeic acid) (Peppercorn et al., 1971). To study the 

microbial conversion of phenolics in an in vitro fermentation model, individual caftaric acid, 

chlorogenic acid, and caffeic acid (1 µmol) were inoculated with either active or inactive human 
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faecal slurry (10 ml) in fermentation bottles and incubated with stirring for 0, 2, 4, 6, 8 or 24 h in 

anaerobic conditions at 37 °C. All phenolics were degraded quickly and none of the free acids 

(caffeic, quinic or tartaric acids) were detected after 2 hours of incubation. Two major microbial 

metabolites were identified as 3-hydroxyphenylpropionic (3-HPP) and benzoic acids (BA). 

Maximal levels of 3-HPP were reached after 2 h of fermentation and accounted for 9-24% of the 

dose of caffeic acid and its esters. The similarities in the metabolic patterns observed for caffeic, 

chlorogenic and caftaric acids suggested that esterification did not affect the metabolism of 

caffeic acid by the gut microbiota (Gonthier et al., 2006).  

With respect to metabolism of chlorogenic acid by esterase of colonic microflora, 

several studies have done with bacteria-based models. Comparing with extracts of human small 

intestine epithelium, liver, plasma and colonic microflora (as a faecal sample) by incubation with 

chlorogenic acid, only esterase activity in colonic microflora played an important role in 

esterified acid (chlorogenic acid) ingested by humans (Plumb et al., 1999). Chlorogenic acid was 

hydrolysed by esterase produced by the indigenous microflora. Bifidobacterium lactis, 

Lactobacillus gasseri, and Escherichia coli were identified by genotypic characterization (16S 

rRNA sequencing) in culture incubation of human faecal bacteria in a chlorogenic acid-based 

medium (Couteau et al., 2001). In a summary, the bioavailability of caffeic acid was influenced 

by the metabolism of intestinal microflora in culture models. Some specific bacteria may play an 

important role for some metabolites related to phenolics.  

VI. RELEVANT METHODOLOGY 

A. BHI microbial incubations VS Caco-2 monolayers   

With regard to metabolism of phenolics, the early bacteria-based model, a pig caecum 

anaerobic method was developed to conduct the metabolism of flavonoids using intestinal 

microbes (Labib et al., 2004). Another method was performed by using the inoculum of caecum 

which was isolated from freshly slaughtered pigs (Keppler et al., 2005).  

The other anaerobic fermentation method was developed with hamster cecal content or 

human gut microflora in Brain-heart infusion (BHI) broth media to investigate the metabolism of 

phenolic compounds (Renouf, 2005; Simons et al., 2005). Fourteen flavonoids were degraded by 

anaerobic fermentation with human gut microflora and showed the 5, 7, 4'-trihydroxyl flavonoids 

(apigenin, genistein, naringenin, and kaempferol) disappeared quickly compared to the other 
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structural motifs (Simons et al., 2005). This method is suitable for the metabolism studies 

incubated with Echinacea purpurea and Hypericum perforatum extracts phenolics using human 

fecal and mouse cecal samples as well as the other plant phenolic compound using salivary 

bacterial fermentation.   

On the other hand, Caco-2 cell model was used for studying the absorption and transport 

of a variety of compounds found in botanicals. Group B soyasaponins was studied in Caco-2 cell 

absorption by comparing with human apparent absorption (Hu et al., 2004). Also genistein was 

shown with efficient absorption by Caco-2 cells (Oitate et al., 2001). Limited uptake of caffeic 

and chlorogenic acids (1.5 and 0.1% transfer, respectively) was found in Caco-2 cells (Konishi 

and Kobayashi, 2004a). In this model, to test botanical compound absorbability, Caco-2 cell was 

used to investigate if the extract matrix and interactions within a simulated botanical fraction 

affect compound absorbability or not. It is suitable for using Caco-2 cells model for human 

intestinal uptake and metabolism of herbal compounds.  

Using isolated rat small intestine as an ex-vivo animal model, Andlauer et al. (2000b) 

studied the absorption rate and biotransformation of isoflavones daidzin and genistin derived 

from pre-digested tofu. Tofu contained small amounts of malonyl-isoflavone and isoflavone 

aglycone. 8% genistein and 8.9% daidzein appeared at the vascular side, either as aglycone, 

glucuronide and glucoside. A 3 and 2-fold increase in the aglycone genistein and daidzein, 

respectively was found in the luminal side. This method should also be thought as an alternative 

approach. However, the apparent permeability was not measured in this method.  

B. Colitis models with bacteria VS dextran sodium sulfate 

   Inflammatory bowel diseases (IBDs; e.g., Crohn’s disease, ulcerative colitis) models 

induced by enteric bacteria were well established (Hutto et al., 1998; Jergens et al., 2007). 

Recently, the Helicobacter bilis-induced colitis model also used to investigate the mucosal gene 

expression profiles (Liu et al., 2009). Also caffeic acid phenethyl ester (CAPE) has been showed 

to decrease the level of colonic NF-κB and prevented colitis in peptidoglycan-polysaccharide 

(PG-PS)-induced rat model (Fitzpatrick et al., 2001). 

On the another aspect, the colitis in mice was also induced by dextran sodium sulfate 

(DSS) in drinking water (Dieleman et al., 1998) causing weight loss, diarrhea with blood and/or 

mucus, shortening of the colon, erosion of the mucosal epithelium, and acute neutrophilic 
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infiltration (Stevceva et al., 1999). The colitis have been developed to investigate the molecular 

and cellular mechanisms of inflammation and showed that IBDs were characterized by up-

regulated nuclear factor kappa B (NF-κB) and pro-inflammatory cytokines and dysregulated 

immune responses resulting in tissue damage (Elson et al., 1995; Reed et al., 2005). Despite of 

the less beneficial action, glucocorticosteroids was still used to treat IBD (Podolsky et al., 1991; 

Podolsky et al., 2002). Immunosuppressive and immunoregulatory agents have also been used to 

control severe disease, however, the serious complications and toxic side effects were associated 

with these agents (Shanahan et al., 2001). DSS induced colitis model were used for screening 

dietary phenolics to treat this disease in animal. In this model, a range dose of dietary rutin 

prevented DSS-induced colitis and possible colorectal carcinogenesis via attenuation of pro-

inflammatory cytokine production (TNF-α, IL-1β) (Kwon et al., 2005). Thus, DSS induced 

colitis model is reasonable choice for screening caffeic acid to treat this disease.  

C. P CR/DGGE and DNA sequencing on microbial analysis VS traditional 

microbiological methods 

Based on our previous work, several human gut microbial species were identified to 

degrade isoflavones, and would therefore be highly likely to degrade flavonoids in general using 

microbial DNA extracted from human fecal samples and from high and low flavonoids degraders 

with amplification of microbial sequences by PCR of 16S rRNA gene variable regions (Muyzer 

et al., 1993). Renouf et al. (2005) showed Bacteroides ovatus, Bacteroides acidifaciens, 

Eubacterium ramulus, Clostridium orbiscindens and Tannerella forsythensis were the major 

human gut microbial species that degraded isoflavones and established that Golden Syrian 

hamsters may be good models to study bioavailability of isoflavones and their possible health 

promoting effects. Renouf et al. (2005) identified high fecal isoflavone degradation rate to 

coincide with distinct fecal microbial species. They concluded that bacterial species shared by 

both high and low degraders with greater amounts in high degraders may be predictors of gut 

microbial degradation and overall bioavailability of isoflavones. Secondary species that may be 

specific to each individual fecal isoflavone degradation rate may be of importance for assessing 

microbial activity and will deserve further attention. This method is suitable for the metabolism 

study incubated with plant phenolic compound using salivary bacterial fermentation and 

identifying the higher and lower degrader for caffeic acid and rutin.  
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Compared with using plate culture microbiological methods or traditional 

microbiological methods, the main measurement is for plating and counting microbes. For 

example, E. purpurea significantly increased total aerobic bacteria, Bacteroides group and 

Bacteroides fragilis in human gastrointestinal (GI) tract after fifteen human subjects consumed 

1000 mg of standardized E. purpurea for 10 days (Hill et al., 2006). However, we will not 

identify the bacterial species related the high or low degrader phenotypes.   

D. HPLC Analysis VS LC-MS-UV analysis 

    High-performance liquid chromatography (HPLC) has high resolution, speed, and 

sensitivity advantages for measuring compounds and was used as a broad range in research 

areas. Renouf et al. (2005) conducted two separate studies, one focusing on fecal and the other 

on cecal microbial degradation of isoflavones in Golden Syrian hamsters. HPLC was used in 

testing the compound level to calculate the degradation rate. Also Simons et al. (2005) used this 

method to measure the fourteen flavonoids which were degraded by anaerobic fermentation with 

human gut microflora (Simons et al., 2005). Ye et al. (2006) also performed HPLC in fifty 

Golden Syrian hamsters which were fed a high fat/casein diet or a high fat/soy protein diet study. 

In this study, urinary isoflavone excretion amounts were detected by HPLC. Two incubation 

studies in this dissertation have used enough amount compounds which were detectable for 

HPLC.  

   However, in this dissertation, the second caffeic acid (CA) study which used 

0.67mmol/kg CA in diet had lower plasma concentration. Caffeic acid was not detectable in such 

a method. Extraction plasma sample concentrations were detected by high-performance liquid 

chromatography (HPLC) coupled to electrospray ionization mass spectrometry (ESI-MS) with a 

UV absorption detector. One animal study, the bioavailability of caffeic acid was studied with 

different dosages to obtain plasma pharmacokinetic profiles of their metabolites. The rat with 

250µmol/d caffeic acid for 8 d, total urinary excretion of caffeic, ferulic, and isoferulic acids was 

12.8 % of intake (mol/mol) and urinary 3-hydroxyphenylpropionic acids (3-HPP) was 4.0 %. 

Using HPLC-electrospray ionization-tandem mass spectrometry, plasma metabolite 

concentrations in rats fed caffeic acids for 8 d were caffeic acid as 41.3µmol/L, ferulic acid as 

7.3 µmol/L, and 3-hydroxyphenylpropionic acid as 1.4µmol/L (Gonthier et al., 2003). The 
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present caffeic acid concentration was detectable for LC-MS-UV analysis whereas HPLC was 

not suitable for measuring the lower caffeic acid concentration in plasma. 
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Abstract 

Different phenolics show a range of apparent degradability, as we have seen previously 

with isoflavones and flavonoids in in vitro anaerobic incubations with human fecal or animal 

cecal samples. We hypothesize that human fecal and mouse cecal degradation rates will be 

similar for major phenolics from Echinacea Purpurea and Hypericum perforatum extracts. 

Human fecal and mouse cecal samples were incubated with these two botanical ethanolic 

extracts to determine which phenolics were least degraded, and hence predicted to be most 

bioavailable to the mouse gastrointestinal mucosa. These studies compared Echinacea with 

Hypericum phenolics in BHI media incubation; and at different time points, the phenolic 

concentrations were measured by HPLC. All of the phenolic compounds tested were degraded by 

human fecal and mouse cecal content and some specific metabolites were produced during the 

incubation period. With twenty human fecal incubations, the degradation rate of rutin (k = 0.57 ± 

0.13 h-1) was significantly greater than that of hyperoside (k = 0.31 ± 0.10 h-1, p < 0.01) in 

Hypericum. Of the 3 major compounds in Echinacea, the degradation rate of caffeic acid (k = 

0.40 ± 0.23 h-1) was less compared with caftaric acid (k = 0.63 ± 0.17 h-1, p < 0.01) and there 

was no difference when compared with cichoric acid (k = 0.49 ± 0.16 h-1, p > 0.05). Similar 

degradation patterns were found in mouse cecal content incubation except that phenolic 

degradation rates were somewhat slower than in human fecal incubations. Briefly, in mouse 

cecal content incubation with Echinacea, the degradation rate of caffeic acid (k = 0.36 ± 0.16 h-1) 

was less compared with both caftaric acid (k = 0.59 ± 0.10 h-1, p < 0.01) and cichoric acid (k = 

0.53 ± 0.24 h-1, p < 0.01). Feces from six human subjects out of 20 and cecal samples from one 
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of six mice were found to produce caffeic acid after 3 hour incubation with E. purpurea extract. 

The caffeic acid degradation rate in caffeic acid producers was significant lower than that of non 

caffeic acid producer in humans. A metabolite was identified as m-hydroxyphenylpropionic acid 

(mHPP), which was reduced and dehydroxylated from caffeic acid.  Rutin and caffeic acid were, 

therefore, predicted to be least degradable from Hypericum or Echinacea extracts in vivo as the 

major phenolics from each botanical in the human or mouse gut. 

Introduction  

  Our long-term goals are to establish a screening assay for dietary components that may 

benefit colon health, to prevent colitis, possibly to prevent colon cancer and to understand the 

relationship between the role of gut microorganisms and beneficial dietary compounds such as 

antioxidant phenolics that may be found in commonly used herbs and plant foods. Isoflavone 

bioavailability has been studied using in vitro anaerobic BHI incubations with human fecal or 

hamster cecal samples according to our previous work (Zheng et al., 2003). Therefore, in vitro 

cecal/fecal incubations offer a reasonable in vitro model to evaluate the gut metabolism of 

phenolics.  

Echinacea purpurea, Echinacea pallida, and Echinacea augustifolia are perennial herbs 

growing as wildflowers on the prairies of the Great Plains (Cheminat et al., 1988). Caffeic acid 

derivatives (caftaric acid, caffeic acid, and cichoric acid) are found in the highest concentration 

in each variety (Barnes et al., 2005; LaLone et al., 2007). Echinacea was widely used by 

consumers and practitioners for preventing and treating common colds and is the second top-

selling herbal product currently in the USA. Some controlled clinical trials have investigated 

beneficial effects of E. purpurea for the early treatment of upper respiratory tract in adults 

(Barrett, 2003). Caffeic acid phenethyl ester was indicated to decrease bacterial peptidoglycan 

polysaccharide-induced colitis in rats as an inhibitor of nuclear factor kappa B (NF-κB) 

(Fitzpatrick et al., 2001). Echinacea was shown to possess antioxidant activity by assessing free 

radical scavenging ability and evaluation of lipid peroxidation level (Sanchez-Moreno, 2002). 

Recently, E. purpurea was indicated to decrease liver superoxide dismutase (SOD) activity in 

rats treated with cyproterone acetate resulting in toxicity (Ali et al., 2008). Hypericum 

perforatum is an herb with yellow-flower which includes a diverse chemical composition, 
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including rutin, hyperoside, quercetin, pseudohypericin, and hypericin (Lawvere et al., 2005).  

Four components in fraction, these combined constituents (0.1 µM chlorogenic acid, 0.08 µM 

amentoflavone, 0.07 µM quercetin, and 0.03 µM pseudohypericin) inhibited lipopolysaccharide 

(LPS)-induced prostaglandin E2 level, the production of the pro-inflammatory cytokine tumor 

necrosis factor-α (TNF-α), and the anti-inflammatory cytokine interleukin-10 (IL-10) (Hammer 

et al., 2008). A study showed that dietary rutin improved dextran sulfate sodium-induced 

experimental colitis in mice through attenuation of pro-inflammatory gene expression (Kwon et 

al., 2005).  

The fecal and cecal phenolic disappearances which were observed in the present study 

will need to compare with compound efficacy in future studies. The aim of this study was to 

further characterize whole extract phenolic metabolism in human and mice by elucidating the 

variability of the apparent microbial degradation and to detect possible bioactive metabolites of 

caffeic acid derivatives or rutin using anaerobic BHI fermentation systems. Caffeic acid 

derivatives in Echinacea purpurea extract were metabolized by gut microbes. Cichoric acid was 

hydrolyzed to caftaric acid and caffeic acid by microbial esterase (Peppercorn et al., 1971). Then 

caftaric acid was also hydrolyzed to caffeic acid which was reduced to dihydrocaffeic acid (3, 4-

dihydroxyphenylpropionic acid); furthermore the later was dehydroxylated to m-

hydroxyphenylpropionic acid (mHPP) (Figure 3.1).  

Materials and Methods 

Plant materials and extracts 

             Echinacea purpurea and Hypericum perforatum plant material were obtained from the 

North Central Regional Plant Introduction Station (NCRPIS) (Ames, IA) of the U.S. Department 

of Agriculture and processed as described previously (Schmitt et al., 2006). Two extracts of plant 

were provided by the NCRPIS and Dr. Murphy’s Laboratory:  Echinacea purpurea Soxhlet 

ethanolic extract (E194), Plant Introduction (PI) 631307 (77 mg/mL); and Hypericum perforatum 

Soxhlet ethanolic extract (H165) ‘Common' (286 mg/mL). Hypericum ‘common' was grown 

from seeds supplied by Johnny's Selected Seeds (Winslow, ME).   

 Chemicals   

Cichoric acid, caftaric acid, caffeic acid, and 3-hydroxyphenylpropionic acid were 

purchased from Chroma Dex TM, Inc. Santa Ana, CA. Rutin, chlorogenic acid, quercetin, and 
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hyperoside were purchased from Fisher Scientific (Hanover Park, IL). 2, 4, 4‘-

Trihydroxydeoxybenzoin (THB) were synthesized using the method (Song et al., 1998). High-

performance liquid chromatography (HPLC) grade acetonitrile, methanol, acetic acid, dimethyl 

sulfoxide (DMSO), and all other chemicals were from Fisher Scientific (Fairlawn, NJ). Milli-Q 

system (Millipore Co., Bedford, MA) HPLC grade water was used to prepare all solutions. 

Study protocol for human fecal and mouse cecal sample preparation 

The first human fecal incubation study was performed with twenty young adult humans. 

The ages ranged from 22 to 55 years (mean age = 32.9 ± 4.2 years). Ten men (8 Asian and 2 

Caucasian) and 10 women (5 Asian and 5 Caucasian) from Iowa State University and the 

surrounding Ames area were required to avoid dietary phenolics for 5 days before providing a 

fecal sample. A list of foods and herbs that might be eaten and those that were to be avoided was 

provided. The other selection criteria required that the subjects be in good health and not taking 

any medication. The body mass index (BMI) was 19.5-25.1 kg/m2 (mean BMI = 22.8 ± 1.1 

kg/m2). All subjects provided one fresh fecal sample in sealed sterile containers (Sage Products 

Inc., Crystal Lake, IL) in the morning before the incubation study. An aliquot of the 

homogenized fecal sample was immediately put into Brain-heart infusion (BHI) media for 

anaerobic incubation. The fecal sample storage time (T) was 1.5-3.5 h (mean T = 2.8 ± 1.2 h). 

Approval of the study design was obtained from the Iowa State University Human Subjects 

Research Committee.  

A second study using mouse cecal contents was conducted  with 24 C3H/HeOuJ mice  

at 6 weeks of age (12 male, 12 female) which were fed a semi-purified AIN-93G diet (Harlan 

Teklad, Madison, WI) for one week and sacrificed by CO2. Cecal contents were removed under 

sterile conditions into BHI media for anaerobic incubation. All animal procedures were 

performed in accordance with the experimental protocol approved by the Iowa State University 

Institutional Animal Care and Use Committee.   

Phenolic incubation 

Brain-heart infusion (BHI) broth medium (Difco Laboratories, Detroit, MI) was used as 

previously described (Zheng Y., et al., 2003) and prepared with the addition of 4 g sodium 

bicarbonate/L medium as a buffer and 20 mL cysteine sulfide (Sigma, St Louis) as an oxygen 

indicator. All plant extracts were dissolved in 100% DMSO. One and a half grams of freshly 

voided human feces or the cecal content of individual mice were transferred to incubation test 



www.manaraa.com

77 

tubes (Fisher Scientific) containing 30 mL of BHI. Echinacea purpurea and Hypericum 

perforatum ethanolic extracts were added to the incubation test tubes for a final concentration of 

1.83mg/mL and 0.65 mg/mL of BHI solution based on HPLC analysis, separately. Twenty fecal 

samples and six cecal contents were prepared for each extracts. The fermentations for fecal 

samples were performed in duplicate. The incubation test tubes were flushed with CO2, sealed 

with rubber stoppers and autoclave tape, and then vortexed for 10 s. One and a half milliliters 

were taken anaerobically from each test tube immediately for time 0 and frozen on dry ice. The 

tubes were placed in a 37 °C incubator. One and a half milliliters aliquots were sampled from the 

incubation test tubes at 3, 6, 9, 12, and 24 h. All the samples taken were put at -60°C until 

extraction and HPLC analysis. Incubation tubes were maintained anaerobically at all times 

during this process to preserve bacterial quality. Negative controls consisted of the fecal 

suspension without extracts. Microbial degradation by the fecal suspension was confirmed by 

positive controls, which consisted of BHI media and extracts with sterilized feces or cecal 

contents and positive controls without the fecal suspension. 

Phenolic extraction 

THB was added at 100 µM to the thawed fermentation samples as an internal standard and 

slowly loaded onto preconditioned C18 solid phase extraction cartridges (Waters Corporation, 

Milford, MA). The cartridge was washed twice with 2 mL of Milli-Q system water. The 

phenolics were eluted with 1 mL of 80% methanol, filtered through 0.45 µm filters, and analyzed 

by HPLC. 

HPLC analysis 

Both phenolic compounds from E. purpurea and H. perforatum were analysized by HPLC. 

The HPLC system consisted of a Hewlett-Packard 1050 Series. Twenty microliters of sample 

was injected onto a reversed-phase, 5 µm, C18 AM 303 column (250 mm × 4.6 mm) (YMC Co. 

Ltd., Wilmington, NC). The mobile phase consisted of 0.1% glacial acetic acid in water (A) and 

100% acetonitrile (B). Solvent B increased from 25 to 48% in 10 min, increased to 90% in 7 

min, and was held for 5 min. The gradient was recycled back to 25% in 2 min for the next run. 

The flow rate was 1 mL/min. The wavelengths used for the preparation of standard curves, 

detection, and quantification of phenolic peaks were 254 and 292 nm. Chem station3D software 

(Hewlett-Packard Company, Scientific Instruments Division, Palo Alto, CA) was used to 

integrate the peak area responses and to evaluate the ultraviolet absorbance spectra. 
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Data analysis 

 The ratio of peak area of a phenolic to THB (100 µM) vs the phenolic concentration was 

used as an internal standard curve to estimate the concentration of phenolics in the fecal or cecal 

fermentations. The rate of disappearance or appearance of phenolics or metabolites in fecal or 

cecal fermentation mixtures was estimated by plotting ln (% remaining phenolic) vs time. The 

negative slope of these lines was the apparent first-order degradation rate constant. The positive 

slope of these lines was the metabolite appearance/generated rate constant. Statistical evaluation 

of disappearance or appearance rate was performed using the SAS Institute (2003, Cary, NC) and 

rates were reported as means ± SEM. Statistical significance was set at P < 0.05. Differences 

between the overall and the individual degradation rates of phenolics as well as caffeic acid 

producer /non caffeic acid producer were estimated using one-way analysis of variance 

(ANOVA) followed by Tukey method as a Post Hoc test. The equal variance and normality of 

residuals assumptions were verified by a residual vs. predicted values plot and a histogram of 

residuals.  

Results 

Metabolism of Echinacea purpurea phenolics in human fecal and mouse cecal incubation 

HPLC chromatogram of different times (0, 3, and 6 h) of caffeic acid derivatives in E. 

purpurea extract also showed that cichoric acid and caftaric acid were decreased at 3 h of 

incubation, whereas caffeic acid was increased and new peak was shown in this time point. At 6 

h of incubation, caffeic acid was decreased and new peak was shown to further increase which 

was identified as m-hydroxyphenylpropionic acid (mHPP) by HPLC (Figure 3.3) and also 

decreased at 12 h incubation (data not shown). 

For the disappearance rates of caffeic acid derivatives in E. purpurea extract during the 

whole time period, among the 3 major compounds in human fecal incubation, the degradation 

rate of caffeic acid (k=0.40 ± 0.23 h-1) was lower compared with caftaric acid (k= 0.63 ± 0.17 h-

1, p < 0.01) and not different from cichoric acid (k= 0.49 ± 0.16 h-1, p > 0.05). In mouse cecal 

content incubation, caftaric acid and caffeic acid degradation rates were somewhat lower and 

cichoric acid degradation rate was higher than in human fecal incubations. Appearance rate of 

the metabolite mHPP was not different between the human fecel and mouse cecal incubations 

(Table 3.1; Figure 3.5).  
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The peak area of E. purpurea extraction phenolics after different time points of 

incubation with human feces showed that six human subjects of 20 peoples and one of six mice 

were found to generate caffeic acid between 3 to 6 hour microflora incubation. A metabolite 

(mHPP) was increased after 3 h to 9 h, which was also reduced after 12 h incubation (Figure 

3.6). Finally caffeic acid (CA) producers (n=6) and non CA producers (n=14) from Echinacea 

purpurea extract after incubation with human feces were identified. A significant difference was 

found between with the two phenotypes in fecal CA degradation rates (Figure 3.8).  

Metabolism of Hypericum perforatum in human fecal and mouse cecal incubation 

HPLC chromatogram of two times (0 and 6 h) of rutin and hyperoside in Hypericum 

perforatum extract in the human fecal incubation showed that rutin decreased quickly, whereas 

hyperoside was decreased slowly compared with rutin, however, no increase in hyperoside nor 

new peaks were found in 20 humans or in mice at any time point (Figure 3.4). With degradation 

rates of rutin /hyperoside in Hypericum extract in whole time period incubation, in twenty human 

fecal incubations, the degradation rate of rutin (k = 0.57 ± 0.13 h-1) was significantly greater than 

that of hyperoside (k = 0.31 ± 0.10 h-1, p < 0.01) in Hypericum (Figure 3.7; Table 1). Similar 

degradation patterns were found in mouse cecal content incubation except that phenolic 

degradation rates were somewhat lower than in human fecal incubations.   

Discussion 

The adult human gut microbiota is composed of 30 – 40 major species which are 

anaerobes (97%) or aerobes (3%), and apparently thousands of minor species. The most common 

anaerobic genera in terms of concentration within gastrointestinal tract (GI) are Bacteroides, 

Bifidobacterium, Eubacterium, Fusobacterium, Clostridium and Lactobacillus. Among these 

genera, the aerobes are the Gram-negative enteric bacteria (Escherichia coli and Salmonella), the 

Gram-positive cocci (Enterococcus, Staphylococcus and Streptococcus) and aerobic fungal 

species (Candida albicans) (Marteau et al., 2004; Andoh et al., 2006; Guerrero Hernández et al., 

2008).  

With respect to metabolism of phenolics, which presumably involves esterases derived 

from colonic microbiota, methods were developed by in vitro studies. Several studies have 

performed using bacteria-based models. A pig caecum anaerobic method was developed to 

conduct the metabolism of flavonoids using intestinal microbes.  In this approach, quercetin was 
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metabolized to 3, 4-dihydroxyphenylacetic acid, 3, 4-dihydroxytoluene , and phloroglucinol 

(Labib et al., 2004). Another method was performed using the inoculum of caecum which was 

isolated from freshly slaughtered pigs and placed in an anaerobic jar to retain the anaerobic 

atmosphere. All anthocyanidin glycosides (including phloroglucinol acid gallic acid) were 

hydrolysed by the microflora between 20 min and 2 h of incubation depending on the sugar 

moiety being measured (Keppler et al., 2005).   

The anaerobic incubation of flavonoids in hamster cecal content and human gut 

microflora with brain-heart infusion (BHI) broth medium was developed to investigate the 

bioavailability of phenolic compounds (Renouf, 2005; Simons et al., 2005). An in vitro cecal 

isoflavone degradation rate cluster analysis revealed that bioavailability phenotypes were due to 

gut microbial degradation which differed from individual hamsters (Renouf, 2005). Fourteen 

flavonoids were degraded by anaerobic fermentation with human gut microflora and showed the 

5,7,4'-trihydroxyl flavonoids (apigenin, genistein, naringenin, and kaempferol) disappeared 

quickly compared to the other compounds (Simons et al., 2005). 

With respect to metabolism of caffeic acid derivatives by esterases of colonic microflora, 

although chlorogenic acid was not found in Echinacea extract in present study; one study that 

compared incubation of chlorogenic acid in human small intestine epithelium, liver, plasma and 

colonic microflora (as a fecal sample), only esterase activity in colonic microflora played an 

important role in chlorogenic acid deesterification (Plumb et al., 1999). Chlorogenic acid was 

hydrolysed by esterase produced by member of the indigenous microbiota. Bifidobacterium 

lactis, Lactobacillus gasseri, and Escherichia coli were identified by genotypic characterization 

(16S rRNA sequencing) in culture incubation of human faecal bacteria in a chlorogenic acid-

based medium (Couteau et al., 2001).  

Caffeic acid was shown to be metabolized by the intestinal microbiota of human and 

experimental animals and some bacteria isolated from human feces (Peppercorn et al., 1971; 

Olthof et al., 2001; Gonthier et al., 2003). In an earlier study, the basic growth media of both 

Thiol Broth (Difco) and Beef (Difco) were used at 370C under anaerobic conditions for 

transformation of caffeic acid in mixed cultures of feces or individual bacteria. Two main 

metabolites, m-hydroxyphenylpropionic acid (m-HPP) and 4-ethylcatechol were detected in 

mixed cultures of fecal incubation. In some organisms with pure culture or mixed cultures, 

Peptostreptococcus sp. and Clostridium perfringens were capable of metabolizing caffeic acid. 
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In mixed culture, E. coli and Streptococcus fecalis were required for the dehydroxylation of 

dihydroxyphenylpropionic acid (dihydrocaffeic acid) (Peppercorn et al., 1971). The same result 

was found in present study. To study the microbial conversion of phenolics in vitro incubation 

model, individual caftaric acid, chlorogenic acid, and caffeic acid (1 µmol) were inoculated with 

either active or inactive human faecal slurry (10 ml) in fermentation bottles and incubated with 

stirring for 0, 2, 4, 6, 8 or 24 h in anaerobic conditions at 37 °C. All phenolics were degraded 

quickly and none of the free acids (caffeic, quinic or tartaric acids) were detected after 2 hours of 

incubation. Two major microbial metabolites were identified as 3-hydroxyphenylpropionic (3-

HPP) and benzoic acids (BA). Maximal levels of 3-HPP were reached after 2 h of fermentation 

and accounted for 9-24% of the dose of caffeic acid and its esters. The similarities in the 

metabolic patterns observed for caffeic, chlorogenic and caftaric acids suggested that 

esterification did not affect the metabolism of caffeic acid by the gut microbiota (Gonthier et al., 

2006).  

No previous studies have been conducted to evaluate the metabolism of cichoric acid by 

gut microbiota in vitro or in vivo. One study showed that cichoric acid (2R, 3R-O-

dicaffeoyltartaric acid) was degraded by polyphenol oxidases (PPO) into caftaric acid (2-O-

caffeoyltartaric acid; monocaffeoyltartaric acid) and caffeic acid during the preparation of E. 

purpurea products. Caftaric acid was degraded as well but more slowly than cichoric acid. Both 

ascorbic acid and ethanol inhibited oxidative degradation and hydrolysis of caftaric acid as 

synergistic effect (Nüsslein et al., 2000). However, the present study was the first study showing 

that cichoric acid was apparently degraded by gut microflora in vitro. During human fecal 

fermentations with E. purpurea extract, caffeic acid production was found after incubation. A 

significantly lower disappearance rate of caffeic acid was identified in fecal samples from caffeic 

acid producers than in feces from CA non-producers. The increased caffeic acid was produced 

by the hydrolysis of caftaric acid because the cichoric acid was not increased. 

With respect to metabolism of H. perforatum phenolics by cleaving off rhamnose with 

a microbial glucosidase, some studies were done in microbial metabolism of rutin, hyperoside, 

and quercetin in vitro. Rutin (quercetin-3-rutinoside) was transformed into hyperoside 

(quercetin-3-glucoside) by splitting off a rhamnose molecule. Then the sugar moiety in quercetin 

glycoside (hyperoside) was deglucosylated by microbial glucosidase to quercetin which was 

degraded by intestinal microbes to 3, 4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, 
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and m-hydroxyphenylpropionic acid (mHPP) (Baba et al., 1983; Figure 3.2). In present study, 

although the hyperoside was not increased, the amount of hyperoside at 3 to 6 h incubation 

seemed to be partly a product of rutin metabolism because hyperoside degradation was 

significantly slower than degradation of rutin (Figure 3.4).  

To investigate the biotransformation of flavonoid metabolites by member of the 

microbiota, Eubacterium ramulus, a strictly anaerobic bacterium in the gastrointestinal tract and 

a quercetin-3-glucoside-degrading anaerobic microorganism, was isolated from human feces and 

incubated with flavonoids. E. ramulus cleaved the ring structure of flavonols and flavones 

generating hydroxyphenylacetic and hydroxyphenylpropionic acids, as well as acetate and 

butyrate (Schneider et al., 2000; Blaut et al., 2003). 

The bioavailability of flavonoids was influenced by the metabolism of the microbiota 

in the intestine. Rutin was absorbed as quercetin because it was hydrolysed by the cecal 

microbiota from rats receiving dietary rutin (Manach et al., 1997). Within 24-48 h of incubation, 

using a new in vitro model system the deglucosylation of rutin and the degradation of its 

aglycone quercetin were investigated by fresh pig caecal inocula and 6 wk/5 months frozen 

inocula. The pattern of quercetin and rutin degradation products was similar in both approaches. 

The preservation of the microbial vitality and the metabolic efficiency of fresh or frozen-

preparations were independent of time and locality (Keppler et al., 2006). In this model system, 

the microbiota were directly recovered from the cecal lumen of pigs which was identified by 

fluorescence in situ hybridization (FISH) using 16S rRNA-based oligonucleotide probes and 

confirmed the suitability for studying metabolism by the human microbiota (Hein et al., 2008). 

The microbial degradation of quercetin with different aglycones, sugar moieties, and types of 

glycosidic bonds were investigated. It was concluded that various quercetin glcosides were 

almost completely metabolized by the intestinal microbiota within 20 min to 4 h depending on 

the sugar moiety and the type of glucosidic bond. The liberated aglucones completely 

disappeared within 8 h during anaerobic fecal incubations (Hein et al., 2008). 

In conclusion, caffeic acid derivatives in Echinacea purpurea extracts as well as 

rutin/hyperoside in Hypericum perforatum extracts were degraded by human fecal and mouse 

cecal microbiota. The compound m-hydroxyphenylpropionic acid was generated by microbial 

fermentation. Caffeic acid was produced during the metabolism of E. purpurea extract. Caffeic 
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acid and rutin would be more bioavailable based on lesser degradation compared with other 

phenolic compounds in E. purpurea and H. perforatum extracts. 

Footnotes 

This research was made possible by Grant P01 ES012020 from the National Institute of 

Environmental Health Sciences (NIEHS) and the Office of Dietary Supplements (ODS), NIH 

and by grant 95P50AT004155 from the National Center of Complementary and Alternative 

Medicine (NCCAM) and ODS, NIH.  Its contents are solely the responsibility of the authors and 

do not necessarily represent the official views of the ODS, NIEHS, NCCAM, or NIH. 
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Table 3.1. Phenolic appearance rates of Echinacea purpurea/Hypericum perforatum extracts 

incubated with human feces and mouse cecal contents 

Herb/Plant Phenolic 
compound 

Appearance rate (h-1)                       
                      

  

Human fecal 
incubation (n=20) 

Mouse cecal 
incubation (n=24) 

Echinacea 
purpurea Caftaric acid -0.63±0.17a -0.59±0.10 a 

  Cichoric acid -0.49±0.16b -0.53±0.24ab 

 Caffeic acid -0.40±0.23bc -0.36±0.16 c 

 mHPP  0.32±0.13#  0.25±0.12# 
Hypericum 
perforatum Rutin -0.57±0.13a -0.49±0.11a 

 Hyperoside -0.31±0.10b -0.29±0.11b 
 

Letters ‘a’, ‘b’ and ‘c’ indicated p <0.01 significant difference compared each compound in 

column with human fecal incubation or mouse cecal incubation in each Herb/Plant; #mHPP (m-

hydroxyphenylpropionic acid) was found from E. purpurea in human fecal incubation/mouse 

cecal incubation.  
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Figure 3.1. Putative microbial metabolism of caffeic acid derivatives in E. purpurea extract. 

Cichoric acid was hydrolyzed to caftaric acid and caffeic acid by microbial esterase. Then 

caftaric acid was also hydrolyzed to caffeic acid which was reduced to dihydrocaffeic acid (3,4-

dihydroxyphenylpropionic acid); furthermore the later was dehydroxylated to m-

hydroxyphenylpropionic acid (mHPP) (Peppercorn et al., 1971). In another pathway, chlorogenic 

acid might be split to caffeic acid by microbial esterase.  
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Figure 3.2. Microbial metabolism of rutin and hyperoside in Hypericum perforatum.  

Rutin (Quercetin-3-rutinoside) was transformed into hyperoside (quercetin-3-glucoside) by 

splitting off a rhamnose molecule. Then sugar moiety in quercetin glycoside (hyperoside) was 

deglycosylated by microbial glucosidase to quercetin which was degraded by intestinal microbes 

to 3,4-dihydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, and m-hydroxyphenylpropionic 

acid(mHPP) (Baba et al., 1983).    
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Figure 3.3. HPLC chromatogram of different times (0, 3, and 6 h) of caffeic acid derivatives in 

Echinacea purpurea extract during the human fecal incubation. At 3 h of incubation, cichoric 

acid and caftaric acid were decreased, whereas caffeic acid was increased and new peak was 

shown in this time point. At 6 h of incubation, caffeic acid was decreased and new peak was 

shown to further increase which was identified as m-hydroxyphenylpropionic acid (mHPP) by 

HPLC and also decreased at 12 h incubation.   
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Figure 3.4. HPLC chromatogram depicting the degradation of rutin and hyperoside at two times 

(0 and 6 h) in Hypericum perforatum extract during the human fecal incubation period. After 6 h 

incubation, rutin was decreased quickly, whereas hyperoside was decreased slowly compared 

with rutin; no increased hyperoside and new peaks were found in 20 peoples and mice at any 

time point. 
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Figure 3.5. Disappearance rates of caffeic acid derivatives in Echinacea purpurea extract during 

the whole time period. Among the 3 major compounds of Echinacea in human fecal incubation, 

the degradation rate of caffeic acid was lower compared with caftaric acid and no different with 

cichoric acid. In mouse cecal content incubation, caftaric acid and caffeic acid degradation rates 

were somewhat lower and cichoric acid degradation rate was higher than in human fecal 

incubations. Letters ‘a’, ‘b’ indicated p < 0.01 significant difference compared each compound in 

human fecal incubations and ‘A’ ‘B’ indicated p < 0.01 significant difference compared each 

compound in mouse cecal incubations. #Appearance rate of metabolite (mHPP) was not different 

between the human fecel and mouse cecal incubations. 
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Figure 3.6. Chronological evaluation of phenolic peak areas in E. purpurea extract after 

different time points of incubation with human feces (n=6). Feces from six of 20 human subjects 

were found to generate caffeic acid from 3 to 6 hour of incubation. A metabolite (mHPP) was 

increased after 3 h to 9 h, which was also decreased after 12 h incubation. 
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Figure 3.7. Disappearance rates of rutin /hyperoside from anerobic incubations of Hypericum 

perforatum extract. With twenty human fecal and mouse cecal content incubations, the 

degradation rate of rutin was significantly greater than that of hyperoside from Hypericum. In 

mouse cecal content incubations, the degradation rates were similar pattern but slightly lower. * 

indicated p <0.01 significant difference compared between compounds. 
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Figure 3.8. Caffeic acid (CA) producer (n = 6) and non CA producer (n = 14) in human fecal 
samples incubated with Echinacea purpurea extract. Letters ‘a’ and ‘b’ indicated p <0.01 
significant difference in CA degradation rate compared between the two CA producer 
phenotypes.  
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CHAPTER 4. DETERMINATION OF HUMAN ORAL MICROBIAL 
PHENOLIC DEGRADATION CAPABILITY AND IDENTIFICATION OF 
BACTERIAL SPECIES ASSOCIATED WITH PHENOLIC-DEGRADING  

IN HUMAN ORAL CAVITY 1 
                                 

Zhong Ye*, Erinn Rieser*, Li Li * and Suzanne Hendrich*  

*Food Science and Human Nutrition, Iowa State University, Ames, IA 50011. 
 

1Parts of this manuscript will be presented at the Experimental Biology Annual Meeting in New 
Orleans LA, April 18 -22, 2009. 

Abstract 

           Certain phenolics in foods are less feasible candidate protectors against periodontal 

disease than are other phenolics because their antibacterial and anti-inflammatory efficacies may 

be inhibited by oral phenolic-degrading microbes. We hypothesized that human oral bacteria had 

significant but highly variable phenolic degradation capability and the phenolic degradation rates 

were related to structure modification. To access oral phenolic degradation and identify microbes 

which were presented in the human oral cavity, Caucasian (2 men, 7 women) and Asian (3 men, 

8 women) subjects who had no dental disease and were not taking dietary supplements provided 

5-7mL saliva before toothbrushing. An aqueous ethanolic 7-compound mixture of rutin, caffeic 

acid, daidzein, quercetin, naringenin, luteolin and myricetin (each 100µM) was incubated with 

saliva in anaerobic BHI media. Incubation tubes were placed at 37°C and concentrations of 

phenolics were assessed by taking duplicate samples from each tube at 0, 3, 6, 9, 12 and 24h.  

Saliva DNA was extracted, bacterial 16S rDNA sequences amplified by PCR and separated by 

denaturing gradient gel electrophoresis (DGGE). HPLC analysis showed that oral degradation 

rates of the compounds differed as follows: caffeic acid = rutin > quercetin = myricetin = 

naringenin > luteolin > daidzein (p < 0.05). Cluster analysis showed statistically significant 

differences in compound degradation rates between high and low degraders of rutin, caffeic acid 

and naringenin (p < 0.05). A significant positive correlation between rutin and naringenin 

degradation rates with higher caffeic acid degradation rate was found (r = 0.61, p < 0.05; r = 

0.55, p < 0.05, respectively). Two human saliva microbial DNA bands were associated with 

greater caffeic acid degradation rate. Two different bands were associated with greater rutin 

degradation rate. Sequencing of 16S rDNA from bands of interest showed concordance with 

species of the Actinomycetales Order (Streptomyces coelicolor and Streptomyces avermitilis) for 
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greater caffeic acid degradation rate and Lactobacillus brevis/Lactobacillus reuteri with greater 

rutin degradation rate, thus these species may affect human oral degradation of these phenolics 

and prevention of gum disease by phenolic treatments. 

Introduction  

       Dietary factors that might prevent periodontal disease have not been well explored, and both 

microbial pathogens and inflammatory reactions in gum tissue might be targets for dietary 

phytochemicals. Flavonoids are commonly occurring and diverse dietary phytochemicals that 

may have antibacterial activity (Hatano et al., 2005). The exposure of the oral cavity to 

flavonoids may occur throughout a meal or over longer time periods in use of flavonoids that 

would fit around the teeth and gums. In this study, we assess human oral microbial flavonoid 

degradation capability while identifying which bacterial species associated with flavonoid 

degradation are present in the human oral cavity. Based on our previous work, several human gut 

microbial species were identified to degrade isoflavones, and would therefore be highly likely to 

degrade flavonoids in general using microbial DNA extracted from human fecal samples and 

from high and low flavonoids degraders with amplification of microbial sequences by PCR of 

16S rRNA gene variable regions (Muyzer et al., 1993). These DNA sequences were separated by 

denaturing gradient gel electrophoresis and microbial species tentatively identified by match 

with existing databases (Renouf, 2005). Several Prevotella spp. (pallens, oralis, Bacteroides 

acidifaciens and uniformis, Bacillis fragilis and eggerthii, Tannerella forsynthensis) significantly 

increased isoflavone disappearance. Prevotella intermedia and Tannerella forsythensis were 

shown to be human oral microbes associated with periodontal pathogenesis (Sakamoto et al., 

2005).  Thus some of the same species responsible for flavonoid degradation are associated with 

periodontal disease. Our main hypotheses was that humans with different oral salivary phenolic 

degradation phenotypes had different oral microbial ecologies and that individuals sharing 

similar in vitro oral salivary degradation rates also possessed similar microorganisms that could 

be involved in degrading phenolics as reflected by PCR-DGGE analysis. The long term goal is to 

determine how to optimize dietary habits and constituents, oral microbial ecology and other 

factors in the human oral epithelium to achieve the greatest protection against periodontal 

disease. This research may help to improve the quality of life, especially for older populations, 
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and may result in novel products, such as flavonoid-containing chewing gum or biofilms for 

overnight use for prophylaxis against periodontitis. 

Materials and Methods 

Chemicals and reagents 

Purified rutin, caffeic acid, daizein, quercetin, naringenin, luteolin and myricetin were 

purchased from Chroma Dex TM, Inc. Santa Ana, CA. 2,4,4‘-Trihydroxydeoxybenzoin (THB) 

were synthesized using the method (Song et al., 1998). High-performance liquid chromatography 

(HPLC) grade acetonitrile, methanol, acetic acid, dimethyl sulfoxide (DMSO), and all other 

chemicals were from Fisher Scientific (Fairlawn, NJ). Milli-Q system (Millipore Co., Bedford, 

MA) HPLC grade water was used to prepare all solutions. 

Human subjects  

This project was approved by the Institutional Review Board of Iowa State University. 

Caucasian (2 men, 7 women) and Asian (3 men, 8 women) subjects were recruited at Iowa State 

University and surrounding areas for this study. Eligibility criteria included age of 19 to 53 

years, no use of antibiotics in the past three months, no dental disease, and no current use of 

dietary supplements or herbs. Users of oral contraceptives or smokers were not excluded.  

Phenolic incubation   

The anaerobical fermention of flavonoids in hamster cecal content and human gut 

microflora with Brain-heart infusion (BHI) broth media was developed to investigate the 

bioavailability of phenolic compounds (Renouf, 2005; Simons et al., 2005). In this study, saliva 

(5-7mL) was collected in the morning without tooth brushing from the previous evening. Saliva 

was put into individual anaerobic BHI media tube with an ethanol 7-compound mixture of rutin, 

caffeic acid, daizein, quercetin, naringenin, luteolin and myricetin (each 100µM). Incubation 

tubes were placed at 37°C and over time concentrations of phenolics were assessed by taking 

duplicate samples from each tube at 0, 3, 6, 9, 12 and 24h. All the samples taken were put at 

-60°C until extraction and HPLC analysis. Time 0 and 24 h salivary samples were collected for 

identifying microbial profile using PCR-Denaturing Gradient Gel Electrophoresis (DGGE) 

method. Incubation tubes were maintained anaerobically at all times. Negative controls consisted 

of the salivary suspension without 7-compound mixture. Microbial degradation by the salivary 

suspension was confirmed by positive controls, which consisted of BHI media and 7-compound 
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mixture without the salivary suspension, as well as another control which consisted of BHI 

media and 7-compound mixture with the sterile-filtered salivary suspension using 22mm PFTE 

filters (Alltech, Deerfield, IL).    

Phenolic extraction from salivary incubation samples and HPLC analysis 

Phenolic extraction from salivary samples in vitro incubations was based on the protocol 

from Zheng et al. (2003). Fifty µL of 2mg/mL THB in 80% methanol, as an internal standard, 

was added to the thawed salivary samples and slowly loaded onto preconditioned C18 solid 

phase extraction cartridges (Waters Corporation, Milford, MA). The cartridge was washed twice 

with 2 mL of Milli-Q system water. The phenolics were eluted with 1 mL of 80% methanol, 

filtered through 0.45 µm filters, and analyzed directly by HPLC. The HPLC system consisted of 

a Hewlett-Packard 1050 Series. Fifteen microliters of sample was injected onto a reversed-phase, 

5 µm, C18 AM 303 Column (250 mm × 4.6 mm) (YMC Co. Ltd., Wilmington, NC). The mobile 

phase consisted of 0.1% glacial acetic acid in water (A) and 100% acetonitrile (B). Solvent B 

increased from 25 to 48% in 10 min, increased to 90% in 7 min, and was held for 5 min. The 

gradient was recycled back to 25% in 2 min for the next run. The flow rate was 1 mL/min. The 

wavelengths used for the preparation of standard curves, detection, and quantification of 

phenolic peaks were 254 and 292 nm. Chem station3D software (Hewlett-Packard Company, 

Scientific Instruments Division, Palo Alto, CA) was used to integrate the peak area responses 

and to evaluate the ultraviolet absorbance spectra. Degradation rates were established by 

calculating the natural logarithm of the percentage remaining phenolics over time. All 4 values 

were considered (2 tubes/sample and 2 samples/time point) at each time point for each subject to 

establish the phenolic degradation rate. To quantify phenolics, standard curves for each 

compound were analyzed by reverse-phase HPLC using the same protocol as above.  

Genomic DNA extraction from salivary samples 

At baseline of the salivary incubation, 2 samples from each tube for each individual were 

taken and immediately frozen at -60°C. To extract DNA from salivary bacteria, a Wizard 

genomic DNA kit from Promega (Madison, WI) was used to extract salivary microbial DNA 

according to the associated protocol. DNA was quantified with NanoDrop ND-1000 UV-Vis 

spectrophotometer (Wilmington, DE).   

Bacterial 16S rDNA amplification 
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Bacterial DNA was amplified using a touchdown PCR method, which decreased the 

annealing temperature over time (1°C every other cycle) in order to target non-specifically all 

bacterial 16S rRNA gene variable region sequences. Primers were synthesized to target non-

specifically the constant region of the variable region of the rRNA gene. PCR was performed as 

described by Muyzer et al. (1993).  Three conserved region primers ( reverse primer 5’-

ATTACCGCGGCTGCTGG-3’,  forward primer 5’-CCTACGGGAGGCAGCAG-3’ and 

forward prime added with a 5’ GC clamp 5’-

CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGGCACGGGGGG-3’) were used  to 

amplify the V3 region of 16S rRNA gene (positions 341–534 in the E. coli gene).  Each PCR 

mixture contained (final concentration): 1µl each primer (1pMol), 1µl dNTP mixture (50pMol 

each dNTP), 5µl of nuclease-free PCR buffer (500mMol KCl, 100mMol Tris HCl pH=9 @ 

25°C, 1.0% Triton X-100 and 15mMol MgCl2), 28µl water and target DNA (8ng/µl PCR 

mixture). Primers were synthesized by Sigma Genosis (The Woodlands, TX) and PCR 

components obtained as a kit from Promega (Madison, WI). After the first step of the PCR 

program (4min 94°C), 1µl nuclease-free PCR buffer, 0.5µl water and 0.5µl Taq polymerase at 5 

units /µl were added. The PCR program was established as followed: 4min 94°C, 20 cycles with 

touchdown: 1min 94°C, 1min 65°C (decrease 1°C every other cycle), 3min 72°C; 10 regular 

cycles: 1min 94°C, 1min 55°C, 3min 72°C; 7min 72°C; cool down at 4°C. PCR products should 

be around 200bp and were checked using a 0.1% agarose gel with ethidium bromide and a PCR 

ladder used as a standard (Sigma). A UV lamp was used to visualize DNA and compare it to a 

standard DNA PCR ladder (mixture of 50, 150, 300, 500, 750 and 1,000 base pair DNA 

fragments) commercially available (Sigma, St. Louis, MO). DNA concentration was measured 

using a Beckman DU® 640 spectrophotometer (Beckman, Schaumburg, IL) at 260 and 280nm 

wavelength.  

Denaturing gradient gel electrophoresis 

Two acrylamide stock solutions were used to prepare the gel: 100% urea denaturing 

solution (42 g urea, 16.9 mL acrylamide, 2 mL 50×Tris Acetate EDTA (TAE), 40 mL of 100% 

formamide and made to 100mL with distilled deionized (dd) water) and 0% urea denaturing 

solution (16.9 mL acrylamide, 2mL 50×TAE and made to 100mL with dd water). The 233 bp 

PCR product was purified with Promega kit and loaded to the 20-80% gradient (urea and 

formamide) acrylamide gel running at 60oC and 120V for 4.5hr on DCode™ Universal Mutation 
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Detection System (Biorad, Hercules, CA ). DNA fragments were separated according to the GC 

content of the DNA sequence. DGGE gels were stained with nitrate silver solution and scanned 

by the GS-800 calibrated imaging densitometer (Bio-Rad, Hercules, CA, USA). The bands 

pattern was analyzed with the Quantity One Software (Biorad, Hercules, CA).  

Sequence of PCR-amplified product  

The bands of interested were exercised from DGGE gel with scalpel and recovered 

with elution and re-amplification with the same PCR program described above. DNA eluted 

from acrylamide was amplified with a slightly different PCR mixture (15µL TE buffer 

containing the target DNA eluted as above, 1µL each primer (5 pMol), 1µl dNTPs mixture (20 

pMol each dNTP), 5µl buffer with 15mMol MgCl and 24µL dd water. After 4min 94°C, the 

TAQ mixture was added as described before. After PCR, the samples were checked for length of 

the products (200bp, using a standard DNA ladder as above) using a 0.1% agarose gel, purified 

using a PCR purification kit from Promega (Madison, WI) and quantified as described before. 

For sequencing, PCR samples concentrations were 50µg/µL and the primer with the lowest Tm 

or %GC was at 10pmol/L. Sequencing was performed by the Iowa State University DNA 

sequencing facility and results checked to confirm sequence identity. Sequences were searched 

against the Ribosomal Database Project II (http://rdp.cme.msu.edu) to get the candidate bacteria 

information. 100 possible matches were provided for each sequence and the possible matches 

that corresponded to known microorganisms were considered as possible species that degraded 

phenolics. 

Statistical analysis 

All statistical analyses were performed using the SAS Institute (2003, Cary, NC). One-

way ANOVA followed by Tukey’s method as a Post Hoc test and multiple comparisons were 

used to compare band intensity, degradation rates for each compound and between clustered 

phenolic degradation phenotypes.  Data were reported as means ± SEM. Statistical significance 

was set at P < 0.05. 

Results and Discussions 

In vitro screening of oral salivary degradation rates   

Twenty subjects were screened for their oral salivary phenolic degradation over 24h 

with a mixture including rutin, caffeic acid, daizein, quercetin, naringenin, luteolin and 
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myricetin. A representative HPLC chromatogram showed retention times with UV detection of 

the seven compounds (each 4mM) in saliva incubation mixtures (Figure 4.2). Daidzein, luteolin, 

quercetin, and myricetin showed relatively similar retention times, but were separable. Rutin, 

caffeic acid and naringenin were more easily separated from the other compounds (Figure 1). 

The saliva degradation rates of each phenolic compound showed high variability. The 

degradation rate of caffeic acid (k = 0.11 ± 0.07 h-1) was similar to that of rutin (k = 0.10 ± 0.04 

h-1) (p > 0.05); both rates were greater (p < 0.05) than that of quercetin, myricetin or naringenin 

(average k = 0.07 ± 0.05 h-1); the three degradation rate of quercetin or myricetin or naringenin 

were not different; whereas they were greater than the degradation rate of luteolin (k = 0.04 ± 

0.02 h-1) which was significantly greater than that of daidzein (k = 0.01 ± 0.02 h-1) (p < 0.05) 

(Figure 4.3.A). The degradation rate of monophenol and glucoside (caffeic acid & rutin) were 

the fastest; both 5-OH and 3-OH (quercetin & myricetin) were faster than 5-OH only (luteolin); 

the non-5-OH was the slowest (daidzein) (Figure 4.3.B). In our previous study, the anaerobic 

fermentation with 14 flavonoids in human gut microflora (n = 11 subjects) showed the 5,7,4'-

trihydroxyl flavonoids (apigenin, genistein, naringeni n, and kaempferol) disappeared quickly 

compared to the other structural motifs. The degradation rate of naringenin (k=0.3± 0.02 h-1) was 

significantly greater than that of daidzein (0.1± 0.02 h-1) (Simons et al., 2005). In the present 

study, the degradation rates of quercetin, myricetin, naringenin and luteolin, all of which 

belonged to the 5,7,4'-trihydroxyl flavonoids category, were also faster than daidzein in salivary 

degradation level except for caffeic acid and rutin. Compared with our previous twenty human 

fecal incubation study, the degradation rate of rutin was k = 0.57 ± 0.13 h-1 in Hypericum 

ethanolic extract. In Echinacea, the degradation rates of caffeic acid was k = 0.40 ± 0.23 h-1. 

Because of the much higher amount of bacteria in the fecal incubations than that of salivary 

sample, the comparison was not reasonable between these two studies. However, the relative 

degradation rates of caffeic acid and rutin in this study were also higher than other compounds 

including 5,7,4'-trihydroxyl flavonoids category and isoflavones.  

DGGE of oral salivary microbial DNA in high vs. low phenolic degraders 

Cluster analysis of caffeic acid, naringenin and rutin degradation rates was shown that 

high and low degraders in 7-compound in mixture. Two subjects (#1 and #4) were stable as 

higher degraders of rutin, caffeic acid and naringenin; six subjects including #2, #5, #8, #11, #12, 

#19 were stable low degraders of these three compounds (Figure 4.4). Higher and lower 
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degraders subgroups showed significantly different degradation rates for caffeic acid, rutin and 

naringenin (p < 0.05); whereas the higher and lower degradation rate clusters for naringenin were 

not significantly different (p > 0.05) (Figure 4.5). Degradation rates of caffeic acid compared 

with rutin or naringenin degradation rates showed significant positive correlations (r = 0.61, p < 

0.05; r = 0.55, p < 0.05, respectively) (Figure 4.6).   

Sequencing and identification of microorganisms from the bands of interest 

Sequencing and matching of the sequences using BLAST Assembled Genomes and 

Ribosomal Database Project reported for each band 100 possible matches to known and 

unknown bacteria. The overall results from all bands associated with caffeic acid and rutin 

degradation showed strong similarities in microorganism identification. Saliva microbial profiles 

of high and low degraders of rutin showed two DNA bands in five higher rutin degraders as well 

as one DNA band associated with five lower rutin degraders. Sequencing of 16S rDNA from 

“Band 1”of interest showed concordance with known species, Lactobacillus brevis/Lactobacillus 

reuteri in higher rutin degraders (Figure 4.7). Oral microbial profile of high and low degraders of 

caffeic acid showed two DNA bands in common among the five high caffeic acid degraders as 

well as one DNA band in common among with the five lower caffeic acid degraders. Sequencing 

of 16S rDNA from “Band 2”of interest showed concordance with known species of the 

Actinomycetales Order (Streptomyces coelicolor /Streptomyces avermitilis) in higher caffeic acid 

degraders (Figure 4.8). Gel densitometry showed that the intensity of bands of interest in higher 

degraders of rutin was significantly greater than that of those bands in the lower degraders of 

rutin (P<0.05) (Figure 4.9); similar band density differences were seen between high and low 

degraders of caffeic acid (P<0.05) (Figure 4.10).   

We have confirmed the phenolic degrading ability of several human oral microbial 

species associated with high oral phenolic degradation rates. Species within the Actinomycetales 

Order (Streptomyces coelicolor /Streptomyces avermitilis) in higher caffeic acid degrader may be 

related to some periodontal diseases (Guthmiller et al., 1993; Sakamoto et al., 2005). However, 

the association of Lactobacillus brevis/Lactobacillus reuteri in higher rutin degrader with 

periodontal pathogenesis is unclear. The complexity of oral microflora and how oral microbial 

ecology may be associated with oral disease is not well elucidated. For future studies, we 

propose a model system to study effects of phenolics using oral epithelial cells, oral pathogenic 

bacteria, and oral bacteria that degrade potentially protective plant phenolics, to simulate 
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interactions in the human oral cavity as a “proof of concept” before further animal model or 

human clinical trials with plant phenolics of interest. 

Footnotes 

This project was funded by Nutrition & Wellness Research Center at Iowa State University. 

The author thank Dr. Polking at the Iowa State University sequencing facility for providing us 

with valuable advice and for sequencing DNAs obtained throughout this project.  
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Figure 4.1. Structure of seven phenolic compounds  
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Figure 4.2. HPLC chromatogram was shown that the retention time and UV absorbance of the 

seven compounds (each 4mM) in salivary incubation at baseline. 
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Figure 4.3A. Oral salivary degradation rates of each phenolic compound in salivary incubation 

showed that the degradation rate of caffeic acid was similar to that of rutin (p > 0.05); the both 

rates were greater (p < 0.05) than that of quercetin or myricetin or naringenin which of the later 

three were no difference; whereas they were greater than that of luteolin and luteolin was greater 

than that of daizein significantly (p < 0.05). Figure 4.3B. The degradation rate of monophenol 

and glucoside (caffeic acid & rutin) were the fastest; both 5-OH and 3-OH (quercetin & 

myricetin) were faster than 5-OH only (luteolin); the non-5-OH was the slowest (daidzein). ‘a, b, 

c, and d’: p < 0.05 indicated the significant difference compared with each other.  
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Figure 4.4. Cluster analysis of caffeic acid, naringenin and rutin degradation rates was shown 

that high and low degraders in 7-compound in mixture. Two subjects (#1 and #4) were stable 

higher degraders of rutin, caffeic acid and naringenin; six subjects including #2, #5, #8, #11, #12, 

#19, were stable lower degraders of the three compounds. 
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Figure 4.5. Higher and lower degraders of caffeic acid, rutin and naringenin were significantly 

different (p < 0.05); whereas the higher and lower degraders of naringenin were not significantly 

different (p > 0.05) based on the two clustered subgroups. 
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Figure 4.6. Correlation of caffeic acid with rutin or naringenin was shown that a significant 

positive correlation between caffeic acid and rutin or naringenin with higher caffeic acid 

degradation rate associated with greater rutin or naringenin (r = 0.61, p < 0.05; r = 0.55, p < 

0.05, respectively).  
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Figure 4.7. Saliva microbial profile of high and low degraders in rutin cluster was displayed by 

the DGGE gel. Two DNA bands were associated with five higher rutin degraders as well as one 

DNA band was associated with five lower rutin degraders. Sequencing of 16S rDNA from “Band 

1”of interest showed concordance with known species, Lactobacillus brevis/Lactobacillus 

reuteri in higher rutin degrader using BLAST Assembled Genomes and Ribosomal Database 

Project. 
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Figure 4.8. Saliva microbial profiles of high and low degraders of caffeic acid were displayed by 

the DGGE gel. Two DNA bands were associated with five higher caffeic acid degraders as well 

as one DNA band was associated with five lower caffeic acid degraders. Sequencing of 16S 

rDNA from “Band 2”of interest showed concordance with known species as the Actinomycetales 

Order (Streptomyces coelicolor /Streptomyces avermitilis) in higher caffeic acid degraders using 

BLAST Assembled Genomes and Ribosomal Database Project. 
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Figure 4.9. Band intensity was shown in each subject between the high and low degrader in rutin 

degradation; the intensity test showed that the intensity of higher degrader of rutin was 

significant greater than that of lower degrader of rutin (P<0.05).   
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Figure 4.10. Band intensity was shown in each subject between the high and low caffeic acid 

degraders; the band intensity of higher degrader of caffeic acid was significant greater than that 

of lower degrader of caffeic acid (P<0.05).  
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1Parts of this manuscript were presented at the annual External Advisory Committee (EAC) 
meeting, Ames, IA, September 25-26th, 2008. 

Abstract 

Hypericum perforatum (Hp) ethanolic extract components were shown to have 

antiinflammatory ability by inhibiting prostaglandins in a macrophage cell line. We hypothesized 

that these Hp components were absorbable in a human intestinal cell model (Caco-2). Such 

absorption would be a necessary precondition for Hp component activity in vivo. Also botanical 

compound absorbability was independent of extract matrix, and interactions within a simulated 

botanical fraction would not affect compound absorbability. To determine the bioavailability of 

extracts, mixtures and individual components, Caco-2 cell line was used as a model for human 

intestinal uptake and metabolism of herbal compounds. Caco-2 cell cytotoxicity of Hp 

(Accession Elixir) components, chlorogenic acid, quercetin, amentoflavone and pseudohypericin, 

individually or as a 4-compound mixture at 5 different concentrations (100:75:50:25:10µM) and 

Hp extract (50:25:10:5µM) based on chlorogenic acid were assayed using MTS reagent. 100 µM 

concentrations of chlorogenic acid, quercetin, and pseudohypericin and 75 µM of amentoflavone 

or 75 µM of each of the 4 components combined were significantly cytotoxic, whereas Hp 

(Elixir) extract containing 50 µM chlorogenic acid and less amounts of the other 3 compounds 

was cytotoxic. Cytotoxicity of the 4-compound mixture was explained by the toxicity of 

amentoflavone, unidentified components of the Hp extract must have contributed to its greater 

cytotoxicity than seen for the 4-compound mixture. Caco-2 cell monolayers were used to 

investigate the cellular uptake and metabolism of Hp compounds/mixture/extract. Three 

concentrations (50, 20, and 5 µM) of chlorogenic acid, quercetin, amentoflavone, 

pseudohypericin, and 4-component mixture and Hp extract based on 20 µM amd 5 µM 

chlorogenic acid were studied. 4 compounds individually or together showed detectable transfer 

across Caco-2 cells at 50 and 20 µM. The apparent permeabilities (Papp) from apical to 
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basolateral transfer were 9.02E-06 cm/s for chlorogenic acid, 3.60E-06 cm/s for quercetin, 

8.00E-07 cm/s for amentoflavone, 5.20E-07 cm/s for pseudohypericin after 4h incubation with 

50µM concentrations. The individual compound Papp showed chlorogenic acid > quercetin > 

amentoflavone > pseudohypericin in incubation separately, and 4 compound mixture Papp 

showed chlorogenic acid = quercetin > amentoflavone > pseudohypericin after 4h incubation. 

Quercetin, amentoflavone and pseudohypericin showed similar Papp between individual and 

mixture, whereas individual Papp of 20 µM chlorogenic acid was greater than that of incubation 

in mixture and Hp extract. The hypothesis was partially confirmed. The effects of the mixture 

and extract on compound metabolism and transfer require further study.   

Introduction 

Ethanolic extracts of Hypericum perforatum has been recommended traditionally for a 

wide range of medical conditions. The most common use of Hp is the treatment of depression. 

Hp also has anti-inflammatory, antibacterial, antiviral properties, and has been used to help heal 

wounds and burns (Schulz et al., 2001; Raso et al., 2002; Hammer et al., 2007). An earlier 

animal model in rats induced by injection of carageenan and prostaglandin E1, Hypericum 

perforatum was found to suppress both the inflammatory effect and the leukocyte infiltration 

(Shipochliev et al., 1981). Recently, two H. perforatum subspecies found in central Italy were 

shown to be active against Gram-positive (Staphylococcus aureus and Enterococcus faecalis), 

two Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and the yeast 

Candida albicans via the Kirby-Bauer agar diffusion method (Cecchini et al., 2007). 

Furthermore, a 4 component system (0.1 µM chlorogenic acid, 0.08 µM amentoflavone, 0.07 µM 

quercetin, and 0.03 µM pseudohypericin found in a fraction of H. perforatum) inhibited 

lipopolysaccharide (LPS)-induced prostaglandin E2 level, the production of the pro-inflammatory 

cytokine tumor necrosis factor-a (TNF-a), and the anti-inflammatory cytokine interleukin-10 (IL-

10) ((Figure 5.1; Hammer et al., 2008). 

Many studies have shown the validity of using Caco-2 cells in studying the absorption 

of a variety of compounds found in botanicals.  Group B soyasaponins was studied in Caco-2 

cell absorption by comparing with human apparent absorption (Hu et al., 2004). As an example 

of flavonoid uptake, genistein was also shown with efficient absorption by Caco-2 cells (Oitate 

et al., 2001). Sfakianos et al. (1997) showed that genistein was ~100% absorbed in rats, with 
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70% biliary excretion in a rapid first-pass effect, with most of the genistein being excreted as 

glucuronide conjugate (Sfakianos et al., 1997). These uptake data were in concordance with the 

absorption of genistein in Caco-2 cells (Oitate et al., 2001). Limited uptake of caffeic and 

chlorogenic acids (1.5 and 0.1% transfer, respectively) was found in Caco-2 cells (Konishi and 

Kobayashi, 2004a). In a rat study, only a small fraction of the caffeic-acid derivative, rosmarinic 

acid, was absorbed (0.5% of ingested dose), whereas a ~10 fold greater amount of caffeic acid 

itself was absorbed (Konishi et al., 2005). Gut microbial deglucosylation may be required before 

significant absorption of these compounds can occur, but mammalian glucose transporters, 

cytosolic β-glucosidase and lactase phlorizin hydrolase (which may hydrolyze some glucosides) 

were thought to be involved in the absorption of at least some such compounds (Scalbert and 

Williamson, 2000). In this study, we hypothesized that botanical compound absorbability was 

independent of extract matrix, and interactions within a simulated botanical fraction would not 

affect compound absorbability. To determine the bioavailability of extracts, mixtures and 

individual components, Caco-2 cells was used as a model for human intestinal uptake and 

metabolism of herbal compounds.  

Materials and Methods 

Plant extracts and cell culture materials 

         Hypericum perforatum plant material was obtained from the North Central Regional Plant 

Introduction Station (NCRPIS) (Ames, IA) of the U.S. Department of Agriculture and processed 

as described previously (Schmitt et al., 2006). The ethanolic extract of plant was provided by the 

NCRPIS and Dr. Murphy’s laboratory: 1.79g Dried Hypericum perforatum (Hp) Soxhlet 

ethanolic extract 250, Ames, 27452 'Elixir'. The human colon adenocarcinoma cell line Caco-2 

was obtained from the American Type Culture Collection (Rockville, MD). Dulbecco's modified 

Eagle's medium (DMEM) was purchased from Nissui Pharmaceuticals (Tokyo, Japan). Fetal calf 

serum, glutamine, nonessential amino acids, penicillin, and streptomycin (10000 units/mL and 

10 mg/mL in 0.9% sodium chloride, respectively), phosphate-buffered saline, and Hank's 

balanced salt solution (HBSS) were all purchased from Invitrogen Corp. (Carlsbad, CA). Type I 

collagen was purchased from Nitta Gelatin Inc. (Osaka, Japan). Plastic dishes, plates, and 

Transwell inserts with 0.4-µm polycarbonate membranes (12 mm in diameter) were obtained 
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from Corning (Corning, NY). Chlorogenic and caffeic acids were from Wako Pure Chemicals 

Inc., Ltd. (Osaka, Japan). All other chemicals used in this study were of analytical grade.  

Chemicals  

Pseudohypericin and amentoflavone were purchased from Chroma Dex TM, Inc. Santa 

Ana, CA; quercetin and chlorogenic acid were purchased from Fisher Scientific (Hanover Park, 

IL). 2, 4, 4‘-Trihydroxydeoxybenzoin (THB) were synthesized for an internal standard using the 

method (Song et al., 1998). High-performance liquid chromatography (HPLC) grade acetonitrile, 

methanol, acetic acid, dimethyl sulfoxide (DMSO), and all other chemicals were from Fisher 

Scientific (Fairlawn, NJ). Milli-Q system (Millipore Co., Bedford, MA) HPLC grade water was 

used to prepare all solutions.  

Experimental Caco-2 study protocol 

 Hypericum perforatum ethanolic extracts, 4 compounds from Hp (amentoflavone, 

pseudohypericin, chlorogenic acid and quercetin) and four compound mixture at three 

concentrations were used in duplicate assays. Hypericum perforatum ethanolic extract 

concentrations were based on Chlorogenic acid as 20 and 5 µM. Concentrations of chlorogenic 

acid, quercetin, amentoflavone and pseudohypericin were 50:20:5 µM. The mixture 

concentrations were based on the same concentration with each compound at 50:20:5 µM. Caco-

2 cells were cultured in ethanol extracts (dissolved in DMSO) from Hypericum perforatum 

extracts, 4 compounds from Hp and four compound mixtures.  

General protocol for use of CellTiter 96® AQueous Assay reagents 

Hypericum perforatum extracts, 4 compounds from Hp (Amentoflavone, 

Pseudohypericin, Chlorogenic acid and Quercetin) and four compound mixture at five 

concentrations were used for the CellTiter 96® AQueous Assay (MTS Assay) and the measurement 

of the absorbance of the formazan was carried out using 96 well microplates. Cell viability of 

Caco-2 cells was detected using MTS cell viability assay kit according to the manufacturer 

protocol.  The following recommendations were for the preparation of reagents sufficient for one 

96-well plate containing cells cultured in a 100µl volume. Cells were grown in 48 well plates 

(day 1), then were treated cells with compounds at 60% confluence ( day2), and added 20µl MTS 

for incubating 1.5hrs and transferred 100 µl into 96 well plate (reading at 562 nm, day3). 
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Transepithelial kinetics of materials in the Caco-2 cell model 

Caco-2 cells were purchased at passage 18 from American Type Culture Collection 

and experiments were conducted at passages 35–45. The cells were grown in DMEM (Sigma) 

with 16% fetal bovine serum (Sigma), 1% nonessential amino acids (Gibco BRL), and 1% 

antibiotic-antimyotic solution (Gibco BRL) at 37°C in an incubator with 5% CO2/95% air. At 

80–100% confluency, cells were trypsinized and seeded on collagen-coated 

polytetrafluroethylene membrane inserts (0.45 µm) fitted in bicameral chambers (Transwell-

COL, 24 mm ID, Corning Costar) at 5.5 x 104 cells /cm2. At 14-16 d postseeding (90-100% 

confluence), A serum-free medium (1% antibiotic-antimyotic solution, 4 mg hydrocortisone/L, 

10 mmol Pipes/L, 5 µg selenium/L, and 34 µg triiodothyronine/L in DMEM medium) was used 

to perform the transport assay. Occasionally, cells were tested for mycoplasma contamination 

using the DNA-based assay kit purchased from Gen-Probe (San Diego). 

          Epithelial uptake was measured for each compound, mixture, and extract at three 

concentrations in duplicate assays. All materials were suspended in the transport buffer by 

sonication for 30 s (Sonic Demembrator, Fisher Scientific). Caco-2 monolayers grown on the 

membrane inserts were first rinsed with 2 mL of Earle’s balanced salt solution (EBSS) and then 

bathed in 2 mL transport buffer, 37°C, 15 min before treatment. Then the apical solution was 

replaced with 1.5 mL transport buffer containing soyasaponin I or soyasapogenol B. A total of 

1.0 mL transport buffer was added to the basal chamber. The system was incubated at 37°C for 4 

h and samples were taken from the basal chamber at 30 min and 1, 2, and 4 h. The basal chamber 

buffer was replenished with transport buffer at each time point. Cumulative transport rates were 

the sum of the amount transported from all time points (Cogburn et al., 1991). At the end of the 

experiment, the buffer in the apical chamber was collected to determine untransported test 

compound. Samples were stored at –20°C until analysis.   

The contents of compounds in the samples were determined as follows. The sample 

from the basal chamber was directly loaded at RT onto a preconditioned Sep-Pak cartridge (light 

short-body C18, Waters), washed with 3 mL of 5% methanol and eluted with 0.8 mL HPLC-grade 

methanol. The sample from the apical chamber was loaded onto a larger size preconditioned Sep-

Pak cartridge (classic short-body C18, Waters) and eluted with 2.0 mL HPLC-grade methanol. 

Then all samples were analyzed by HPLC. Permeability coefficient (Papp) was determined using 
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the following equations (Artursson, 1991; Oitate et al., 2001). The apparent permeability 

coefficient (Papp) equation:  

   

Vr: volume of the basal chamber (ml), 

A: surface area of the membrane (cm2), 

C0: the initial concentration in the apical chamber (µM), 

dC/dt: the flux (µM/s) determined by the linear slope of basal concentration versus time. 

Measurement of transepithelial electrical resistance (TER) 

 Cells were grown for TER measurement in Transwell inserts with the semipermeable 

membrane first coated with type I collagen (12-mm diameter and 0.4-µm pore size, Corning 

Costar, Corning, NY). The cells were seeded at a density of 1 × 105/cm2, and the medium was 

changed every 1 or 2 days. Monolayers were formed after culturing for 2 weeks. The integrity of 

the cell layer was evaluated by measurement of TER with Millicell-ERS equipment (Millipore, 

MA). Monolayers with TER of >250 Ω•cm2 were used for the experiments. The TER of the 

monolayer was measured before and after an assay sample was added to the insert. 

Statistical analysis 

All data are expressed as means ± SD. Statistical analyses were performed with SAS 

Institute (2003, Cary, NC). The transport kinetics of compounds across the Caco-2 cell 

monolayer was analyzed by general linear regression. Differences in cell uptake, transport 

kinetics, and cytotoxicity of each material compound at different concentrations were compared 

with ANOVA and Tukey’s multiple comparison test. Differences were considered significant at 

P < 0.05. 

Results and Discussions 

The Caco-2 cell cytotoxicity of Hp (Accession Elixir) components, chlorogenic acid, 

quercetin, amentoflavone and pseudohypericin, individually or as a 4-compound mixture at 5 

different concentrations (100:75:50:25:10µM) and Hp extract (50:25:10:5µM) were shown 

100µM concentrations of chlorogenic acid, quercetin, and pseudohypericin and 75 µM of 

amentoflavone or 75 µM of each of the 4 components combined were significantly cytotoxic, 
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whereas Hp (Elixir) extract containing 50 µM chlorogenic acid and lesser amounts of the other 3 

compounds was cytotoxic (Figure 5.2). 

In Caco-2 cells, 4 compounds individually or together showed detectable transfer 

across Caco-2 cells at 50 and 20 µM (Figure 4). Chlorogenic acid and quercetin in were 

transferred by the Caco-2 monolayer from Hp extract containing both 20 and 5 µM chlorogenic 

acid (Figure 5.3), whereas transfer of amentoflavone and pseudohypericin was detectable only 

from the Hp extract containing the greatest amount of  the compounds (extract containing 20 µM 

chlorogenic acid). The apparent permeabilities from apical to basolateral transfer of 4 individual 

components were chlorogenic acid (9.02E-06 cm/s), quercetin (3.60E-06 cm/s), amentoflavone 

(8.00E-07 cm/s), pseudohypericin (5.20E-07 cm/s) after 4 h incubation on the monolayer with 

50µM concentrations of each compound, respectively (Figure 5.4). The individual compound 

Papp showed chlorogenic acid > quercetin > amentoflavone > pseudohypericin in incubation 

separately, and 4 compound mixture Papp showed chlorogenic acid = quercetin > 

amentoflavone > pseudohypericin after 4h incubation with both 50 and 20 µM. Quercetin, 

amentoflavone and pseudohypericin showed similar Papp between individual and mixture with 

both 50 and 20 µM, whereas individual Papp of 20 µM chlorogenic acid was greater than that of 

incubation in mixture and Hp extract. Most compounds showed concentration-dependent 

absorption with a higher concentration having greater apparent permeability than did the lower 

concentration in individual compound and mixture incubations with Caco-2 monolayer except 

for chlorogenic acid and pseudohypericin in the mixture (Figure 5.4).   

To investigate the bioavailability and metabolism of chlorogenic acid (CGA) and 

caffeic acid in cell culture, most studies have used HepG2 cell or Caco-2 as biotransformation 

models. One study has tested the hepatic uptake and metabolism in human hepatoma HepG2 

cells which were incubated for 2 and 18 h with chlorogenic acid, caffeic and ferulic acids. The 

results showed that caffeic acid had been transported and methylation/glucuronidation/sulfation 

were the main pathways for its metabolism; ferulic acid underwent glucuronidation as its only 

metabolite and was more slowly metabolized by HepG2 cells; and chlorogenic acid had the 

lowest absorption due to the esterification of the caffeic acid moiety with quinic acid (Mateos et 

al., 2006). 

Some cell culture studies showed that chlorogenic acid (CGA) and caffeic acid (CA) 

were absorbed by paracellular diffusion in human intestinal Caco-2 cells.  CA had some although 
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low affinity for monocarboxylic acid transporter (MCT). This resulted in the greater absorption 

of caffeic acid compared to chlorogenic acid (Konishi and Kobayashi, 2004a). Caffeic acid was 

absorbed as 0.20 % and 1.57 % of initial CA in the basolateral phase with or without apical to 

basolateral proton gradient. More than 98% of apically loaded caffeic acid was retained on the 

apical side, suggesting CA was restricted by the tight junctions (Konishi and Kobayashi, 2004a). 

Furthermore, the major metabolites of caffeic acid formed by gut microflora including m-

coumaric acid, m-hydroxyphenylpropionic acid (mHPP), and 3,4-dihydroxyphenylpropionic acid 

(DHPP) were transported by MCT via proton-coupled direction, in which the transport of m-

coumaric acid, mHPP, and DHPP was inhibited by an MCT substrate, whereas DHPP was 

mainly permeated across Caco-2 cells via the paracellular pathway (Konishi and Kobayashi, 

2004b).  

Conclusions 

Chlorogenic acid, quercetin, amentoflavone, pseudohypericin, as individual compounds 

and from a mixture of the 4 compounds or from Hypericum perforatum extract were taken up 

and transferred by Caco-2 cells after incubation. The apical to basolateral transport of 

chlorogenic acid and quercetin were higher than amentoflavone and peudohypericin after 4-h 

incubation on this monolayer. Quercetin, amentoflavone and pseudohypericin showed similar 

Papp between individual and mixture with both 50 and 20 µM. Most compounds showed 

concentration-dependent absorption in individual compound and mixture incubations with Caco-

2 monolayer. 

Footnotes 

This research was made possible by Grant P01 ES012020 from the National Institute of 

Environmental Health Sciences (NIEHS) and the Office of Dietary Supplements (ODS), NIH 

and by grant 95P50AT004155 from the National Center of Complementary and Alternative 

Medicine (NCCAM) and ODS, NIH.  Its contents are solely the responsibility of the authors and 
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Figure 5.1. Structure of 4 components in Hypericum perforatumm (Elixir)  
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Figure 5.2. Cytotoxicity of 4 component system, mixture, and Hypericum perforatum 

extract were measured as mean percent reduction in cell viability compared with media + DMSO 

control-treated cells ± standard error (n=6). 100µM concentrations of chlorogenic acid, 

quercetin, and pseudohypericin and 75 µM of amentoflavone or 75 µM of each of the 4 

components combined were significantly cytotoxic, whereas HP (Elixir) extract containing 50 

µM chlorogenic acid and lesser amounts of the other 3 compounds were cytotoxic. # P< 0.05 

indicated that the % cell viability was significantly less than control.  
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Figure 5.3. Hypericum perforatum extract chromatogram during 0.5 and 1h period. Extract 

concentration was based on chlorogenic acid concentration of 5µM. 
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Figure 5.4. Apparent permeability of four individual components from Hypericum perforatum 

during 4h period, each individual component was used at 20 and 50 µM. The individual 

compound Papp showed chlorogenic acid > quercetin > amentoflavone > pseudohypericin in 

incubation separately, and 4 compound mixture Papp showed chlorogenic acid = quercetin > 

amentoflavone > pseudohypericin after 4h incubation with both 50 and 20 µM. Most compounds 

showed concentration-dependent absorption with a higher concentration\having greater apparent 

permeability than did the lower concentration in individual compound and mixture incubations 

with Caco-2 monolayer except for chlorogenic acid and pseudohypericin in mixture. Letters ‘a’, 

‘b’, ‘c’ and‘d’ indicated p <0.05 significant difference compared between compounds. 
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Abstract 

Susceptibility to inflammatory bowel diseases depends upon interactions between the 

genetics of the individual and induction of chronic mucosal inflammation. We hypothesized that 

administration of dietary phenolics, caffeic acid and rutin, would suppress upregulation of 

inflammatory markers and intestinal damage in a mouse model of colitis.  Colitis was induced in 

C3H/HeOuJ mice (8 wk old, 6 male/6 female per treatment) with 1.25% dextran sulfate sodium 

(DSS) for 6 d in their drinking water. Rutin (1.0 mmol (524 mg)/kg in diet), caffeic acid (1.0 

mmol (179 mg)/kg in diet), and hypoxoside extract (15 mg/d, an anticolitic phenolic control) 

were fed for 7 d before and during DSS treatment, as well as without DSS treatment. Body 

weight loss was prevented by rutin and caffeic acid during DSS treatment. Colon lengths in mice 

fed caffeic acid and hypoxoside during DSS treatment were similar to DSS-negative control. 

Food intake was improved and myeloperoxidase (MPO) was decreased with each phenolic 

treatment in DSS-treated mice compared with DSS treatment alone. Colonic mRNA expression 

of IL-17 and iNOS were inhibited when IL-4 was increased by each phenolic treatment 

combined with DSS, whereas CYP4B1 mRNA was increased only by caffeic acid in DSS-treated 

mice, compared with DSS treatment alone. Colonic and cecal histopathology scores of DSS-

treated mice were significantly more severe (P< 0.01) than in mice fed caffeic acid before and 
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during DSS treatment based on mucosal height, necrosis, edema, erosion, and inflammatory cell 

infiltration. Although both rutin and caffeic acid suppressed the expression of selected 

inflammatory markers, only caffeic acid protected against DSS induced colitis, in association 

with normalization of CYP4B1 expression. The inhibition of DSS-induced colitic pathology by 

caffeic acid was mediated by mechanisms in addition to anti-inflammatory effects that deserve 

further study. 

Key words: caffeic acid, rutin, colitis, CYP4B1, inflammation, mouse 

Introduction  

The pathogenesis of inflammatory bowel diseases (IBDs; e.g., Crohn’s disease, 

ulcerative colitis) is not fully understood. Genes, environment, enteric microbiota, and other 

factors alter disease risk (1). Nutritional factors (e.g., elemental diets, sucrose or other specific 

carbohydrate diets, other dietary components that alter gut microbial populations) modulate these 

diseases, and play a significant role in the treatment of IBD and influence the disease course and 

prognosis (2).   Increased colon cancer risk is a key concern associated with colitis, as evident in 

a Danish epidemiological study of more than 5,500 ulcerative colitis patients who showed 

greater risk for colon cancer than controls (3). IBD models induced by enteric bacteria are well 

established (4, 5). Colitis in mice also may be induced by dextran sodium sulfate (DSS) in 

drinking water (6) causing weight loss, diarrhea with blood and/or mucus, shortening of the 

colon, erosion of the mucosal epithelium, and acute neutrophilic infiltration (7). Experimental 

colitis models are characterized by up-regulated nuclear factor kappa B (NF-κB) and pro-

inflammatory cytokines (e.g., interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), 

interferon-gamma (IFN-γ)) resulting in tissue damage (8, 9). Despite adverse side effects, 

glucocorticosteroids are used to treat IBD (1, 10). Immunosuppressive and immunoregulatory 

agents (cyclosporine, aminosalicylates and azathioprine) have also been used to control severe 

disease, however, serious complications and toxic side effects were associated with them (11). 

Thus, dietary phenolics may be an alternative to control this disease. Caffeic acid phenethyl ester 

(CAPE) decreased colonic NF-κB and prevented colitis in peptidoglycan-polysaccharide (PG-

PS)-treated rats injected with 30 mg CAPE /kg for seven days (12). Dietary rutin (feeding 0.1% 

rutin diet for 2 weeks) prevented DSS-induced colitis and possible colorectal carcinogenesis by 

suppressing pro-inflammatory cytokines (TNF-α, IL-1β, 13). Using DSS- and Brachyspira 
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hyodysenteriae-induced colitis, hypoxoside extract showed protection (Wannemuehler 

laboratory, unpublished). Hypoxoside Extract, a known anti-inflammatory component of African 

potato (14, 15), decreased inflammatory damage, was possibly related to the down-regulation of 

NF-κB pathways in mucosa. Dietary caffeic acid, a major phenolic acid widely distributed in 

plant foods and herbs, has not been studied for its effect on DSS-induced mouse colitis and the 

relationship between specific inflammation-related cytokine mRNA expression, 

myeloperoxidase and mucosal histopathology. In the present study, commonly occurring dietary 

phenolics, rutin and caffeic acid, were compared with hypoxoside extract, for protective efficacy 

in a C3H/HeOuJ mouse model of colitis. This work may lead to improvement of the therapeutic 

and prophylactic benefits of plant foods and botanical supplements. Our long term goals are to 

identify novel anti-inflammatory phenolics that may be used to prevent or treat human colitis and 

to establish and validate a screening assay for dietary components that may prevent colitis and 

colon cancer. 

Materials and Methods 

Chemicals and Reagents 

Purified caffeic acid and rutin were purchased from Chroma Dex TM, Inc. Santa Ana, CA. 

Hypoxoside extract was a gift from Allison AC, Dawa Corp., Belmont, CA (Figure 1). Dextran 

sulphate sodium was purchased from Fisher Scientific (Pittsburgh, PA). RNAlater® Tissue 

Collection solution was purchased from Applied Biosystems Business (Foster City, CA). 

Working solutions of 3, 3′, 5, 5′-tetramethylbenzidine hydrochloride (TMB, Sigma; 2.5 mM in 

water) and hydrogen peroxide (5 mM in water) were prepared immediately before use. Sulfuric 

acid (Fisher Scientific; 2 M) was used as a reaction stop solution. The detergent 

cetyltrimethylammonium bromide (CTAB, Sigma; 0.02% in water) was used as a lysing agent 

for determining total myeloperoxidase content of neutrophils. Phenylmethylsulfonyl fluoride 

(PMSF, Sigma), dimethyl sulfoxide (DMSO, Sigma) and phosphate buffered saline (PBS, pH 

7.4) were used for tissue preparation. 

Diets 

In the experimental period, C3H/HeOuJ mice were fed AIN 93 G (Harlan Teklad, 

Madison, WI) diet with or without DSS or treatment diets based on AIN 93 G containing rutin 

(1.0 mmol/kg or 524 mg/kg in diet) or caffeic acid (1.0 mmol/kg or 179 mg/kg in diet). For the 
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remaining treatment, mice were fed AIN 93 G diet and gavaged with hypoxoside extract (15 

mg/d, 60 mg solid crude hypoxoside extract/mL sterile saline, each mouse given 0.25 mL daily 

using a 22 gauge feeding needle) with or without DSS. Experimental diets were prepared and 

stored at 4°C. 

Experimental Design and Animals 

Forty eight male and 48 female mice at 6 weeks of age were obtained from Jackson 

Laboratory (Bar Harbor, ME). All mice were acclimated for 2 week before starting the 

experiment and were randomly assigned to eight treatment groups in order to achieve similar 

mean body weight/group. Mice were individually housed in microisolater cages with wood chip 

bedding and consumed standard rodent lab chow and tap water ad libitum during the acclimation 

period. The animal room was maintained at 23°C with a 12-h light/dark cycle during the 

experimental period. The experiment was a 4 x 2 factorial design: 8 treatment groups (control, 

caffeic acid, rutin and hypoxoside) and 2 disease statuses (with and without DSS, Figure 2). 

Colitis was induced in groups of 12 C3H/HeOuJ mice (6 males and 6 females) with DSS in their 

drinking water, a method previously reported with some modifications (6, 16, 17), namely 1.25% 

DSS was used, and only for 6 days rather than repeated DSS administration over longer time 

periods. The various phenolic treatments were fed to the mice for 7 days prior to DSS exposure 

and continually during DSS treatment (Figure 2). Food intake was measured weekly over 2-3 

consecutive days per week. Body weights were measured twice a week. Signs of disease (weight 

loss, diarrhea, dehydration) were observed daily. The supplemented diets and the DSS-

containing drinking water were provided to the mice continually until the experiment was 

terminated. All animal procedures were performed in accordance with the experimental protocol 

approved by the Iowa State University Institutional Animal Care and Use Committee. 

Tissue Sample Collection and Preparation 

The colon and cecum were removed after euthanasia. After washing in phosphate-

buffered saline (PBS), they were placed on filter papers to measure colonic lengths, score 

macroscopic cecal lesions and obtain photographs of each tissue. The colonic and cecal contents 

were removed, and the colon and cecum from each animal were fixed in formalin and six of the 

12 tissue samples were randomly selected from each group for histopathological analyses. Gross 

cecal lesions were scored using published criteria (18). Macroscopic cecal lesions were scored 0-

4 as follows: no gross lesions (grade 0, normal); evidence of atrophy (grade 1, mild); excess 
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intraluminal mucus with atrophy localized to the cecal apex (grade 2, moderate); generalized 

cecal atrophy with increased intraluminal mucus and no cecal contents (grade 3, severe); score 3 

plus bloody cecal content (grade 4, most severe). Colonic tissues for myeloperoxidase activity 

were put in 15% DMSO and 0.1 mM PMSF in cryovials (Corning Company, Corning, New 

York). A portion of colon (approximate 1.5 cm) for each sample was placed into RNALater (1.2 

mL) for subsequent RT-PCR analysis of cytokine-specific mRNA expression. All above samples 

were stored at -85°C until analysis. 

Colonic Mucosal Histopathological Analysis 

Cecum and proximal colon in 10% neutral buffered formalin were embedded in paraffin, 

sectioned, and stained with hematoxylin and eosin (H&E). Sections of the cecum and proximal 

colon were scored by a pathologist (Dr. J. Hostetter) who was blinded to the treatment group 

(19). Briefly, histological scores were evaluated based on the severity of mucosal epithelial 

damage, architectural/glandular alterations, and the magnitude/character of lamina propria 

cellular infiltration. Scoring system for the histopathological evaluation of gastrointestinal 

inflammation included mucosal height, erosions, inflammatory score, edema score and 

inflammatory cells. Parameters were scored 1-5, resulting in a maximal total histological score of 

20 based on the four evaluation parameters. 

Reverse Transcription-Polymerase Chain Reaction (RT-PCR) for Colonic Inflammation-

Related Cytokine Gene Expression 

Primers for IL-1β, IL-4, IL-6, IL-10, IL-17, GAPDH, IFN-γ, TNF-α, iNOS (inducible 

nitric oxide synthase), ICAM-1 (intercellular adhesion molecule-l), CYP4B1 (cytochromes P450, 

family 4B1) were analyzed in pooled colonic samples from each treatment group as a 

preliminary screen of gene expression (Table 6.1). Reverse transcription–polymerase chain 

reaction (RT–PCR) analysis of mRNA in each pooled sample was performed as previously 

described with some modifications (20, 21). 20 mg samples were prepared from each colonic 

tissues and total mRNA was extracted using a Qiagen RNeasy mini Kit (Ambion, Austin, TX) 

for dissected tissue homogenization. The mRNA concentrations were detected by NanoDrop® 

ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies, Inc. Wilmington, DE) in 2.0µl 

mRNA samples using RNA program. Then the mRNA extractions were treated with TURBO 

DNA-free DNase (Ambion, Austin, TX) to remove genomic DNA. SYBR green (Invitrogen, San 
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Diego, CA) real-time polymerase chain reaction (the same method as described below) was used 

for testing DNA contamination in mRNA samples to determine the mRNA sample purity. The 

mRNA extraction was reverse transcribed into cDNA by SuperScript™ III First-Strand Synthesis 

System (Invitrogen, San Diego, CA). The cDNA converted from 20ng mRNA was amplified 

using Platinum® SYBR® Green qPCR SuperMix-UDG (Invitrogen, San Diego, CA). Real time 

PCR was used to provide quantitative assessment of mucosal cytokine expression. The PCR 

condition was 95°C for 10 minutes, followed by 40 cycles of amplification (95°C for 10 seconds, 

60°C for 15 seconds) run in Rotor-Gene 3000 (Corbett Research, Mortlake, Australia). Then the 

specific primers were used to evaluate the gene expression of IL-17, IL-4, iNOS and CYP4B1 in 

six individual colon tissue samples from eight treatment groups (3 males and 3 females). 

Standard curves of specific genes and housekeeping gene GAPDH were made by two-fold serial 

dilutions of cDNA using real-time PCR. The relative mRNA quantity was normalized to 

GAPDH. 

Myeloperoxidase Assay Method in Colonic Tissue 

Myeloperoxidase (MPO) activity which was used to quantify neutrophil accumulation in 

tissues was assessed using 96-well flat bottom microtiter plates (Linbro/Titertek, USA) and was 

previously described with some modifications (22, 23). Colonic tissues were thawed and blotted 

on paper towel at room temperature to absorb as much as moisture as possible. Tissue samples 

were trimmed to approximately 35mg. Each sample was homogenized in l mL PBS and PMSF 

(0.1mM) and the probe was washed 5 times with PBS. Each sample was sonicated on pulse 

(output control set to 2; 50% duty cycle setting; 5-10 pulse per sample, Sonicator 3000, Misonix, 

Inc. Farmingdale, NY). Samples were centrifuged 15 minutes at 1200 rpm (Eppendorf® Micro 

Centrifuge Model, USA). At least 150 µl supernatant was collected. Each sample was measured 

by NanoDrop® ND-1000 UV-Vis Spectrophotometer (NanoDrop Technologies, Inc. 

Wilmington, DE) to measure total protein concentrations. 150 µl of each sample supernatant was 

plated in triplicate wells (per sample). TMB (50 µL) was added, followed immediately with 50 

µL 10 µM H2O2. The color change reaction was allowed to proceed for 2 min, and 50 µL of 2 M 

sulfuric acid was added to stop the reaction. The optical density (OD) in each well was 

determined at 405 nM using a microtiter plate spectrophotometer (V-Max, Molecular Devices, 

USA) with SOFTmax PRO 4.0 software. The total myeloperoxidase content was calculated from 

OD of lysed neutrophils using a standard curve. Standard suspensions of mouse neutrophils 
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(3×106 cells mL−1) with PMSF (1 mM in absolute ethanol) were prepared and stored at −85 °C. 

Two-fold serial dilutions of a standard neutrophil suspension were lysed with CTAB. The MPO 

content of these known concentrations of neutrophils was compared to the OD values and a 

standard curve was calculated. Total myeloperoxidase content in mouse colonic tissue were 

normalized for number of neutrophils. The MPO activity was expressed as the units of enzyme 

per gram of wet weight of tissue. 

Statistical Analysis 

Data were analyzed by the difference between means and statistical significance was 

calculated using three-way ANOVA followed by Tukey method as a Post Hoc test (SAS 

Institute, 2003, Cary, NC). The equal variance and normality of residuals assumptions are 

verified by a residual vs. predicted values plot and a histogram of residuals. Both group and 

male/female of colon length, food intake, body weight change, MPO activity, total 

histopathology scores, and cytokine/enzyme RT-PCR products were reported as means ± SEM. 

Statistical significance was set at P < 0.05. Pearson correlation analysis was used for relationship 

between MPO activity/cytokine gene expression and colonic histopathology score. 

Results 

General Effects of Phenolic Treatments on DSS-Induced Colitis 

Regardless of the treatment group, food intakes measured on the day before drinking 

DSS-supplemented water and second day of the DSS treatment period did not differ (Table 6.2). 

Food intake was decreased at final day after DSS-treated alone compared with control not treated 

with DSS. Food intakes in the phenolic-treated groups not treated with DSS did not differ from 

control not treated with DSS (Table 6.2). Mice given rutin, hypoxoside, and caffeic acid had 

normalized food intake at the sixth day DSS-treated compared to animals not given DSS control 

(Figure 3). Body weight change ( the percentage of  body weight gained in DSS period over the 

body weight before DSS-treated ) of 0.8% in DSS-positive control was significantly less than in 

DSS- negative control by fourfold (P < 0.01). DSS-treated mice given diets supplemented with 

either rutin or caffeic acid showed improved body weight whereas mice administered hypoxoside 

with DSS did not significantly increase their body weight (Figure 6.3). The mice fed rutin, 

hypoxoside, or caffeic acid not treated DSS were similar to controls without DSS in body weight 



www.manaraa.com

136 

increase (Figure 6.3). The cecal macroscopic scores did not differ among treatments with or 

without DSS. No diarrhea and rectal bleeding were observed during the period of DSS treatment. 

The colon length of the mice given DSS or DSS plus rutin was significantly shortened by ~8% 

(P < 0.01) as compared with all treatment groups not given DSS (Table 6.2). The colon lengths 

of DSS-treated mice fed caffeic acid or hypoxoside were significantly longer than those from the 

DSS-only controls (P < 0.01) (Table 6.2).  Within treatment groups, no differences were found 

between males and females for colon length, food intake or body weight change (data not 

shown). 

Colonic Myeloperoxidase (MPO) Activity of Phenolic Treatments and DSS Controls 

Colonic MPO activity in DSS-only controls was significantly greater than in non-treated 

control mice (P < 0.01). MPO activities were significantly decreased in the colonic extracts from 

DSS-treated mice fed each of the supplemented diets (rutin, hypoxoside, or caffeic acid) 

compared with the colonic extracts from the DSS-only control mice (P < 0.01). MPO activities 

in mice fed phenolics without DSS exposure did not differ from untreated control mice (Figure 

6.4). Within treatments, no difference was found between males and females for MPO activity 

(data not shown). 

Colonic and Cecal Histopathology Changes in C3H Mice 

Colonic and cecal histopathology scores of the DSS-treated mice were significantly more 

severe compared with control mice not given DSS, respectively (P < 0.01, Table 6.3). The group 

fed caffeic acid with DSS had significantly less severe colonic and cecal microscopic lesion 

scores than mice treated with DSS alone. Representative histological images from each group are 

shown (Figure 6.7). The mean colonic and cecal histopathology scores were both significantly 

decreased by 37% in the group fed caffeic acid with DSS compared to DSS-only controls (P < 

0.01, Figure 6.7), whereas the histopathology scores in mice given rutin or hypoxoside along 

with DSS were not significantly attenuated in comparison to control mice not given DSS (P < 

0.01, Table 6.3). Controls fed the non-supplemented AIN 93 G alone or diets containing rutin, 

caffeic acid or hypoxoside had significantly lesser histopathology scores than the DSS treated 

controls (P < 0.01) (Table 6.3). Within treatments, no difference was found between males and 

females for histopathology score (data not shown). 

Reverse Transcription–Polymerase Chain Reaction Analysis of Cytokine mRNA 



www.manaraa.com

137 

Some genes have been implicated in the pathogenesis of colitis, including IL-1β, IL-4, 

IL-6, IL-10, IL-17, iNOS, IFN-γ, TNF-α, ICAM and CYP4B1 (9, 13, 40, 41, 51, Table 1). To 

delve into the molecular mechanism underlying the suppression of colitis by phenolics in DSS-

induced treatments, mRNA expression levels of possible pro-inflammatory mediators in colonic 

tissue were measured by RT-PCR. Preliminary evaluations demonstrated that the expression 

levels of IL-17-, iNOS-, IL-4-, and CYP4B1-specific mRNA differed among the various 

treatments. There was significant up-regulation of colonic tissue mRNA expression of IL-17 and 

iNOS (P < 0.01, Figure 6.5A), and significant down-regulation of IL-4 and CYP4B1 mRNA 

expression in DSS-treated controls compared to controls not given DSS (P < 0.01, Figure 6.5B). 

Colonic tissue mRNA expression of IL-17 and iNOS were significantly inhibited by each 

phenolic treatment (rutin, hypoxoside, and caffeic acid) when given with DSS, compared with 

DSS-only controls (P < 0.05, Figure 6.5A) whereas IL-4 –specific mRNA was significantly 

increased by each phenolic treatment (rutin, hypoxoside and caffeic acid) in groups treated with 

DSS compared with DSS-only controls (P < 0.05, Figure 6.5B). However, only mice fed caffeic 

acid and treated with DSS had significantly increased CYP4B1-specific mRNA levels compared 

with DSS-only controls (P < 0.05). 

Relationship between the Colonic Myeloperoxidase Activity/Cytokine Gene Expression and 

Colonic Histopathology Score Evaluation 

Relationships between colonic MPO activity/IL-17 gene expression and histopathology 

score in DSS-treated control and caffeic acid with DSS were shown (Figure 6.6). There was a 

significant association with colonic histopathology score on colonic level of IL-17 gene 

expression and colonic MPO activity in DSS-induced with or without caffeic acid treated mice. 

In both DSS-treated control and caffeic acid with DSS mice, colonic MPO activity (Figure 6.6A) 

and colonic level of IL-17 gene expression (Figure 6.6B) were significantly related to colonic 

histopathology score, with less MPO activity and greater decrease in colonic IL-17 gene 

expression associated with decreased histopathology score. 

Discussions 

The study of dietary phenolics that may prevent diseases such as colitis is made more 

relevant to humans by considering the likelihood of ingestion of effective doses of these 

phenolics from common foods or dietary supplements. Regular coffee consumers generally 

ingest 0.5–1 g chlorogenic acid/d, which may be converted to 250–500 mg caffeic acid/d (24). 
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From a German survey, daily intake of caffeic acid was 206 mg/d, and the principal sources were 

coffee (92% of caffeic acid) and fruit and fruit juices combined (25). In our study, based on 

mouse body weight and food intake, the daily caffeic acid intake was 45 mg/kg BW/day, which 

was approximately 7-fold higher than the dose of 500 mg/d (7 mg/ kg BW). Thus, the dose used 

in these studies was relevant to that typically consumed by humans, because mice have a tenfold 

greater surface area than do humans proportionate to body weight. The human equivalent dose of 

a compound given to mice would therefore be about 10-fold greater than the human dose per kg 

BW. This assumes similar absorbability of caffeic acid in mice and humans. From an estimate of 

flavonol intake in Finland of ~ 20 mg/person per day or ~0.3 mg/kg BW (26), the current dose of 

the flavonol glucoside, rutin (~45 mg/kg BW), was approximately an order of magnitude greater 

than a human dietary equivalent dose (by the same logic as above), but this might be a feasible 

human intake if supplements were included. Additional studies of human bioavailability of 

phenolics are needed for the development of colitis preventive diets. 

DSS-induced colitis is partially triggered by aberrant or exaggerated immune responses 

to bacterial antigens derived from the intestinal lumen (27, 28). Shortening of the large intestine 

is thought to be induced by the thickening of colon caused by edema and muscular hypertrophy, 

as observed in ulcerative colitis. Diarrhea may be due to loss of absorptive epithelium that results 

in the shortening of the colon (29). Damage to the epithelium is a key feature of acute DSS-

induced colitis (30), characterized by multi-focal areas of mucosal erosion, colonic epithelial cell 

injury, and significant mucosal infiltration of neutrophils, key immune cells during inflammatory 

responses.  Increased IL-17, a pro-inflammatory cytokine and decreased IL-4, an anti-

inflammatory cytokine accompany DSS-induced colitis, with these changes hypothesized to be 

prevented by proposed anti-inflammatory dietary components, caffeic acid and rutin.  In our 

study, expression of several other genes possibly associated with inflammatory responses 

including cytochrome p450 (CYP4B1) were evaluated in response to prophylactic treatment with 

phenolic compounds during DSS-induced colitis. 

Herbs and plant foods contain a variety of phenolic compounds that may modulate 

immune function. Several caffeic acid derivatives, major phenolic acids in plants, have been 

identified from herbs such as Echinacea (e.g., caftaric acid, echinacoside, cichoric acid). The 

flavonoid, rutin is found in many herbs including St. John’s wort (Hypericum perforatum). In 

vivo administration of extracts from H. perforatum and E. purpurea in carrageenan-induced paw 
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edema in mice showed that H. perforatum at 100 mg/kg inhibited both iNOS and COX-2 

expression, two pro-inflammatory genes, whereas treatment with 100 mg/kg E. purpurea 

decreased COX-2 expression only (31). In the present study, colonic gene expression of iNOS 

was inhibited by rutin, hypoxoside, and caffeic acid in DSS-treated mice in association with 

decreased MPO (neutrophil activity). Caffeic acid has antioxidant, anti-inflammatory, and 

antibacterial properties. Ovariectomized rats subjected to trinitrobenzene sulfonic acid (TNBS)-

induced colitis and treated with a caffeic acid derivative (CAPE, 30 mg/kg) had decreased 

malondialdehyde (MDA), increased superoxide dismutase (SOD), catalase (CAT), and 

glutathione (GSH) associated with decreased colitis (32). E. coli-induced pyelonephritis was also 

decreased in rats given CAPE, along with decreased MDA and nitric oxide and increased GSH 

and SOD activity (33) suggesting that anti-inflammatory effects of caffeic acid might occur 

through antioxidant mechanisms (32, 33).  Rutin had protective effects in a Wistar rat model of 

gastric lesions induced by 50% ethanol (34). The gastroprotection of 200 mg rutin/kg diet given 

before ethanol treatment was thought to be due to anti-lipoperoxidative and antioxidant enzyme 

activity based on decreased MDA and increased glutathione peroxidase, compared with ethanol-

treated controls. However, the anti-inflammatory marker, ethanol-induced neutrophil infiltration 

expressed as myeloperoxidase activity was not decreased by rutin in gastric lesions, compared 

with our study in which rutin diminished MPO in DSS-induced colitis (34). Anti-inflammatory 

and antioxidant effects of dietary phenolics generally occur together, but which effects or 

mechanisms are most crucial are not clear as of yet. Additional factors in inflammatory 

responses are under investigation as well. 

Following DSS treatment, colonic mRNA expression of IL-17 was inhibited by each 

phenolic treatment compared with DSS-only controls. IL-17+ cells, IL-17 mRNA expression, and 

IL-17 protein levels were detectable and significantly elevated in inflamed mucosa and in the 

serum of patients with IBD (35). IL-17 family members (IL-17A/F) have been associated with 

inflammatory diseases, autoimmune diseases and cancer. Induction of IL-17A/F induced 

chemokines (CXCL8, CXCL6, CXCL1), growth factors (G-CSF, GM-CSF, IL-6), and adhesion 

molecules (ICAM-1) have been shown to augment neutrophil accumulation (36). Increased IL-

17 gene expression was detected in a mouse colitis model in the acute phase at day 7 after 

exposure to 5% DSS in drinking water, but the DSS concentration was much higher than our 

study (37). Upregulation of IL-17, IL-1β, and IL-12 p70 was found during chronic colitis in 
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C57BL/6 mice whereas production of IL-1β, IL-6, IL-18, and G-CSF was elevated in BALB/c 

mice. Chronic production of IL-17 and IL-12 p70 has been correlated with extensive 

inflammatory cell infiltration as DSS-induced colitis progressed from the acute to chronic stages 

of inflammation in C57BL/6 mice (37). In the present studies, IL-17 gene expression was 

elevated in DSS-induced colitis in C3H/HeOuJ mice (Figure 6.5A). Colonic IL-17 gene 

expression was also associated with colonic histopathological score in DSS-induced with or 

without caffeic acid treated mice (Figure 6.6B). IL-17 gene expression may be related to 

histopathological change to evaluate the anti-inflammatory mechanisms. In contrast, dietary 

supplementation with each of the three phenolic compounds attenuated IL-17 gene expression 

that was also associated with other anti-inflammatory effects (decreased iNOS, increased IL-4) 

but diminished histopathological scores were only associated with caffeic acid treatment. 

Colonic mRNA expression of IL-4 was increased by each phenolic treatment compared 

with DSS-only controls. In a previously reported study, CD4+ T cells, IL-4, IL-2, and IFN-γ 

mRNA expression were significantly increased in female BALB/c mice by supplementation with 

20 mg/kg CAPE (38). In contrast, Ansorge et al. (39) showed that propolis as well as its 

constituent (CAPE) suppressed Th2 type (IL-4) and Th1 type (IFN- γ) lymphocytes. Based on 

the results of the present study, upregulation of IL-4 gene expression may not be strongly 

associated with attenuated colitic lesions because only caffeic acid suppressed the severity of 

histopathological lesion scores, even though all three phenolics increased IL-4 (Figure 6.5B). 

A key finding in the present study was that the colonic tissue mRNA expression of 

CYP4B1was increased in DSS-treated mice fed caffeic acid compared with DSS treated controls. 

CYP4B1 has attracted interest due to its possible ability to oxygenate fatty acids and form some 

eicosanoids (40) that suggest a function in inflammatory processes. In our study, increased 

CYP4B1 occurred in association with decreased colitic pathology after caffeic acid ingestion by 

DSS-treated mice. The CYP4B1 gene encodes a cytochrome P450 monooxygenase that catalyzes 

many xenobiotic and endogenous reactions, both detoxifying and activating (41). P450 gene 

expression is altered according to gender, microsomal enzyme inducers, age, diet, and hormones 

(42). Species-specific CYP4B1 mRNA have been reported to be mostly distributed in heart, 

brain, spleen, testis, lung, liver, skeletal muscle, and kidney in mice and humans (43). CYP4B1 

mRNA has also been measured throughout small intestine and colon in rabbit and at low levels 

in human colon using in situ hybridization (44). Although induced further by 2-aminofluorene, 
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CYP4B1 was an abundantly expressed isoform of P450 in rabbit gastrointestinal tract. Our 

finding is the first evidence that CYP4B1 is found in mouse colon, and may be metabolically 

important in colitis. In addition to the intestinal tract, P450 expression and activity has been 

previously reported to be decreased in lung, liver and extrahepatic tissues during inflammation 

and infection (42, 45). The mRNA level of CYP4B1 was increased after resolution of the allergic 

pulmonary inflammation (45). Although CYP4B1 is responsible for bioactivation of many 

toxicants, a CYP4B1 transgene may provide some benefits of gene therapy for cancer or 

replacement studies using 2-aminoanthracene/4-ipomeanol (46, 47). The CYP4B1/4-1M system 

efficiently and rapidly killed hepatocellular carcinoma cells (48). Thus, the role of CYP4B1 in 

colitis and its putative regulation by caffeic acid are interesting targets for further study. 

Some mechanisms reported to regulate certain members of P450 may be related to 

elucidate CYP4B1 gene regulation. CYP2C11 gene contains a binding site for the transcriptional 

factor NF-κB (49). The inhibition of NF-κB binding also improved the CYP2C11 promoter-

reporter gene. Down-regulation of CYP2C11 and CYP3A mediated by IL-2 in combination with 

cytokine-induced activation of NF-κB was reported in rat hepatocytes and may relate to IL-2 

induction of the proto-oncogene transcription factor c-myc (50). However, little is known about 

the relationship between the CYP2C11 and CYP4B1 gene. It was recently reported that CYP3A4 

expression was suppressed following NF-κB activation by lipopolysaccharide (LPS) and TNF-α 

through interactions between NF-κB and pregnane X receptor (PXR) and retinoid X receptor 

(RXR) complex. NF-κB p65 disassociated the PXR/RXR complex from DNA sequences as 

determined by electrophoretic mobility shift assay and chromatin immunoprecipitation assays 

(51). Based on the above evidence, the effect of caffeic acid phenethyl ester (CAPE) to decrease 

NF- қB shown in bacterial peptidoglycan polysaccharide-induced colitis in rats (12) suggests that 

caffeic acid might modify CYP4B1-specific mRNA expression through effects on NF- қB as 

well, which deserves further study. 

Another mechanism related to P450 regulation was associated with the role of nitric 

oxide. Khatsenko et al. (52) indicated that down-regulation of CYP2B1/2 mRNA and protein 

induced by LPS was blocked with phenobarbital in rats, mediated at least in part by nitric oxide. 

Takemura et al. (53) reported that LPS-induced suppression of CYP2C11 and CYP3A2 gene 

expression was prevented by an inhibitor of iNOS, but they did not study regulation of CYP4B1. 

Expression of iNOS-specific mRNA was decreased in adult male Wistar rats treated with 10 
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µmol CAPE/kg prior to torsion/detorsion injury in the testis (54). iNOS expression and NF-κB 

binding activity were inhibited by CAPE in RAW 264.7 cells induced by LPS. The suppression 

of iNOS gene expression by CAPE may exert anti-inflammatory effects through NF-κB 

inactivation (55). Nitric oxide (NO) levels were reduced in CAPE-treated Wistar rats during 

Escherichia coli.-induced pyelonephritis (33). Decreased iNOS mRNA expression might play a 

role in normalizing CYP4B1 mRNA expression in the present study, but iNOS was decreased by 

all 3 phenolic treatments compared with DSS-only controls, and CYP4B1 was only normalized 

by caffeic acid compared with the no DSS group in the present study (Figure 6.5B). Thus the 

relation between the ability of phenolics to alter iNOS and CYP4B1 needs more study. 

In conclusion, caffeic acid, rutin, and hypoxoside, decreased the gene expression of pro-

inflammatory genes IL-17, iNOS, and increased IL-4 gene expression partially protecting from 

DSS-induced colitis, but CYP4B1 upregulated by caffeic acid was a key correlate of attenuated 

DSS-induced colitis in mice. Caffeic acid is a common phytochemical found widely in plant 

foods that may protect against IBD. Future studies should examine the extent to which various 

caffeic acid derivatives in plant foods and herbs might be metabolized to caffeic acid or other 

bioavailable metabolites related to caffeic acid (e.g., ferulic acid), and the function of CYP4B1 in 

colonic health and disease. 
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 Table 6.1. Sequences of Primers Were Used for Reverse Transcription Polymerase Chain 

Reaction Amplification 

Gene—
Object 
 

Primer Sequence (5'–3') Amplification 
product size                                       
(bp)            

Accession 

GAPDH Forward TCACCACCATGGAGAAGGC 168  
 Reverse GCTAAGCAGTTGGTGGTGCA   

IL-1-beta Forward CAACCAACAAGTGATATTCTCCATG 152 M15131 

 Reverse GATCCACACTCTCCAGCTGCA  X04964 
IL-4 Forward ACAGGAGAAGGGACGCCAT   95 M25892 
 Reverse GAAGCCCTACAGACGAGCTCA  X05253 

IL-6 Forward GAGGATACCACTCCCAACAGACC 141 X54542 
 Reverse AAGTGCATCATCGTTGTTCATACA  M20572 
IL-10 Forward GGTTGCCAAGCCTTATCGGA 191 M37897 
 Reverse ACCTGCTCCACTGCCTTGCT  M84340 
IL-17 Forward GCTCCAGAAGGCCCTCAGA 142 NM_010552 
 Reverse AGCTTTCCCTCCGCATTGA  U35108 

IFN-gamma Forward TCAAGTGGCATAGATGTGGAAGAA 92 K00083 

 Reverse TGGCTCTGCAGGATTTTCATG  M74466 

TNF-alpha Forward CATCTTCTCAAAATTCGAGTGACAA 175 M13049 

 Reverse TGGGAGTAGACAAGGTACAACCC  Y00467 

iNOS Forward CAGCTGGGCTGTACAAACCTT 95 U43428 
 Reverse CATTGGAAGTGAAGCGTTTCG  L23806 
ICAM-1 Forward CCGCAGGTCCAATTCACACT 143 X52264 
 Reverse TCCAGCCGAGGACCATACAG  X15372 
CYP4B1 Forward CACCTGGACTTCCTCGACAT 233  
 Reverse TCATCCCACTGGAAGGAGTC              
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Table 6.2. Colon Lengths Were Increased by Caffeic Acid or Hypoxoside and Food Intakes 

Were Improved by Each Phenolic in C3H/HeOuJ Mouse Model of Colitis1 

 Colon length 
(mm) 

 Food intake 
(g/d) 

 

  

First day before 
DSS 

Second day after 
DSS 

Final day after 
DSS 

DSS-only 52.5±5.0* 5.7±1.2 # 5.8±0.9 # 4.5±0.7 

Rutin and DSS 54.8±5.7* 5.3±0.9 5.3±0.7 5.1±0.6 

Hypoxoside and DSS 57.1±5.5 5.2±1.3 5.1±1.7 4.9±1.4 

Caffeic acid and  DSS 58.8±3.2 5.5±0.7 5.6±1.3 5.1±1.1 

Control diet (no DSS) 57.2±5.6 5.8±0.8 6.0±1.4 5.8±0.9 

Rutin (no DSS) 57.6±4.4 5.3±1.1 5.5±0.9 5.7±0.8 

Hypoxoside (no DSS) 59.6±4.9 5.2±1.3 5.1±1.3 5.3±1.2 

Caffeic acid (no DSS) 60.0±4.3 5.6±0.8 5.3±0.6 5.5±0.9 
*P < 0.01 significantly shorter compared to the control diet (no DSS) with other treatment 

groups in colon length; #P < 0.01 significantly greater compared with food intake on final day 

after DSS, within DSS-only group; P < 0.05 significantly less than the control diet (no DSS) in 

final day food intake after DSS. 1In the experimental period, C3H/HeOuJ mice were fed AIN 

93G supplemented with rutin, caffeic acid, or hypoxoside. 
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Table 6.3. Histopathology Scores Were Decreased by Caffeic Acid treatment in C3H/HeOuJ 

Mouse Model of Colitis  

Treatment Colon histopathology score Cecal histopathology score 

DSS-only 10.0±1.8* 10.9±2.5# 

Rutin and DSS 8.0±2.0* 9.2±4.7# 

Hypoxoside and DSS 8.8±1.7* 9.0±2.8# 

Caffeic acid and DSS 6.3±1.2 6.9±2.8 

Control (no DSS) 4.3±1.4 7.1±4.8 

Rutin (no DSS) 4.8±1.0 5.1±1.4 

Hypoxoside (no DSS) 5.0±0.9 5.7±1.6 

Caffeic acid  (no DSS) 4.8±1.5 4.8±1.2 
Scoring for the colonic and cecal histopathology evaluation of gastrointestinal inflammation 

included mucosal height, inflammatory cells, erosions, inflammatory score, and edema score in 

C3H/HeOuJ mouse treated with rutin, hypoxoside and caffeic acid with or without DSS. *P < 

0.01 significantly greater than control (no DSS) in colon histopathology score; # P < 0.01 

significantly greater than control (no DSS) in cecal histopathology score. 
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Figure 6.1. Structures of caffeic acid, rutin and hypoxoside. 
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Figure 6.2. Experimental design. Phenolics fed were rutin (1.0 mmol/kg diet), hypoxoside 

extract (15 mg/d by gavage) and caffeic acid (1.0 mmol/kg diet). The study included eight 

groups of C3H/HeOuJ mice: DSS (-) without and with each of the 3 phenolics; DSS-only 

control: DSS (+); Rutin/DSS (+); Caffeic acid/DSS (+); Hypoxoside/DSS (+). 
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Figure 6.3. Rutin and caffeic acid normalized body weight in DSS-treated mice. *P < 0.01 

significantly less compared with control (no DSS) group; mice given rutin, hypoxoside, and 

caffeic acid had normalized food intake at the sixth day DSS-treated compared with animals not 

given DSS control; #P < 0.05 significantly less in DSS-only group on food intake after the sixth 

day DSS-treated than the control diet (no DSS). 
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Figure 6.4. Rutin, hypoxoside and caffeic acid normalized colonic myeloperoxidase (MPO) 

activity in DSS-treated mice. *P < 0.05 greater compared with control (no DSS) group.   
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Figure 6.5. Pro-inflammatory gene expressions in rutin, hypoxoside and caffeic acid with or 

without DSS-treated mice (n=6). (A) Rutin, hypoxoside and caffeic acid normalized IL-17 and 

iNOS gene expressions in DSS-treated mice. *P < 0.05 greater in DSS-only group compared 

with control (no DSS) group.  (B) Rutin, hypoxoside or caffeic acid normalized IL-4 gene 

expressions and caffeic acid normalized CYP4B1 gene expression in DSS-treated mice. #P < 

0.05 less in DSS-only group compared with control (no DSS) group; $P < 0.05 less compared 

with control (no DSS) group. 
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Figure 6.6. Relationship between colonic MPO activity/ IL-17 expression and histopathology 

score in DSS-only control and caffeic acid-treated with DSS mice. (A) Colonic histopathological 

score was significantly associated with colonic MPO activity in DSS-only control (r = 0.83, P 

=0.04); and in caffeic acid-treated with DSS mice (r = 0.92, P =0.009). (B) Colonic 

histopathological score was significantly associated with IL-17 expression in DSS-only control 

(r = 0.88, P =0.02); and in caffeic acid-treated with DSS mice (r = 0.89, P =0.02).  



www.manaraa.com

157 

 

 

Figure 6.7. Colon histopathology (A-E, magnification = 400X, Scale bar = 50um). Colon from 

mouse given DSS only (A), Rutin + DSS (B)  Hypoxicide + DSS (C), Caffeic acid + DSS (D), 

and control mouse given neither DSS or dietary supplement (E). Note that caffeic acid treatment 

leads to reduced inflammatory cell infiltration within the lamina propria and prevents epithelial 

ulceration. * P < 0.01less in caffeic acid + DSS and no DSS as compared with DSS-only control. 
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Abstract 

Dietary caffeic acid protected against dextran sulfate sodium (DSS) induced colitis in 

C3H/HeOuJ mice. To examine interindividual variability in the efficacy of caffeic acid, thirty six 

10-wk-old CD-1/IGS female mice were fed 120 mg caffeic acid/kg diet, with 12 controls, both 

groups fed for 7 days. After this, half of the mice in each treatment were given 1.25% DSS in 

drinking water for 5 days. Caffeic acid treatment prevented mouse body weight loss by DSS (p < 

0.05). Food intake suppression was prevented by caffeic acid/DSS compared with DSS-treated 

controls. Colon lengths in mice fed caffeic acid/DSS were longer than in DSS-treated control. 

Myeloperoxidase (MPO) was inhibited in mice given caffeic acid/DSS compared with DSS-

treated controls. Cecal histopathological score (necrosis, edema, erosion and neutrophil 

infiltration) of DSS-fed mice was significantly more severe compared with mice fed caffeic acid 

before and during DSS treatment. Also expression of CYP4B1was increased by caffeic acid/DSS 

treatment compared with DSS-treated control. Two subgroups were identified based upon cluster 

analysis of cecal histopathological score in mice fed caffeic acid/DSS. Mice with “severe” cecal 

damage showed mean cecal histopathological score of 8.5 (n = 11, p <0.05) than did mice 

showing “mild” cecal damage (mean score = 4.5, n = 4).  Caffeic acid-fed mice with severe cecal 

damage had significantly greater colonic MPO activity than did mice with mild cecal damage (p 

<0.05). These effects in mice fed caffeic acid/DSS were also related to differences in caffeic acid 

bioavailability. In contrast, the subgroup of caffeic acid-fed mice with severe cecal damage 

showed a lower mean plasma concentration of caffeic acid. Relationships between cecal 

histopathological score and colonic MPO activity or colon length or caffeic acid plasma 
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concentration in caffeic acid/DSS treatment indicated a significant positive association with cecal 

score for colonic MPO activity (r = 0.72, P < 0.01) and a significant negative association with 

cecal score on colon length (r = -0.41, P < 0.05) or plasma concentration of caffeic acid (r = -

0.56, P <0.01).  

Introduction 

 Caffeic acid is an antioxidant monophenol common in the human diet; and its potential 

health benefit depends on its bioavailability. Our long-term goals are to establish a screening 

assay for dietary components that may benefit colon health, to prevent colitis and possibly 

prevent colon cancer. Our previous study showed dietary caffeic acid protected against dextran 

sulphate sodium (DSS) induced colitis in C3H/HeOuJ mice treated with different phenolics. The 

mechanism may involve upregulated CYP4B1 in intestinal expression. However, the 

antiinflammatory pattern related to the colonic myeloperoxidase activity or colon length and 

cecal histopathological score were not evaluated. And the caffeic acid bioavailability which 

related to gut microbial degradation remains unknown. In vitro cecal/fecal bacterial incubations 

with phenolics are a reasonabl method to study to gut metabolism of phenolics. Caffeic acid has 

antioxidant, anti-inflammatory and antibacterial properties, including deceased malondialdehyde 

(MDA) and increased superoxide dismutase (SOD), catalase (CAT) and reduced glutathione 

(GSH) in bilateral ovariectomized rats subjected to trinitrobenzene sulfonic acid (TNBS)-

induced colitis (Ek RO et al., 2007). Better absorption of pure caffeic acid in the small intestine 

was associated with a higher plasma concentration and urinary excretion of intact caffeic acid 

and its tissular metabolites (Olthof et al., 2001). We hypothesize that variability in efficacy of 

caffeic acid against DSS-induced colitis is strongly linked with variability in caffeic acid 

bioavailability. Thus caffeic acid may be a useful model compound for studying the role of gut 

microbial degradation and metabolism of phenolics in compound efficacy.  

Materials and Methods 

Chemicals and Reagents 

Purified caffeic acid was purchased from Chroma Dex TM, Inc. Santa Ana, CA. Dextran 

sulphate sodium was purchased from Fisher Scientific (Pittsburgh, PA). RNAlater® Tissue 
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Collection solution was purchased from Applied Biosystems Business (Foster City, CA). 

Working solutions of 3, 3′, 5, 5′-tetramethylbenzidine hydrochloride (TMB, Sigma; 2.5 mM in 

water) and hydrogen peroxide (5 mM in water) were prepared immediately before use. Sulfuric 

acid (Fisher Scientific; 2 M) was used as a reaction stop solution. The detergent 

cetyltrimethylammonium bromide (CTAB, Sigma; 0.02% in water) was used as a lysing agent 

for determining total myeloperoxidase content of neutrophils. Phenylmethylsulfonyl fluoride 

(PMSF, Sigma), dimethyl sulfoxide (DMSO, Sigma) and phosphate buffered saline (PBS, pH 

7.4) were used for tissue preparation. 

Diets 

In the experimental period, CD-1/IGS female mice were fed AIN 93 G (Harlan Teklad, 

Madison, WI) diet with or without DSS or treatment diets based on AIN 93 G containing caffeic 

acid (120 mg/kg in diet). Experimental diets were prepared and stored at 4°C.  

Experimental Design and Animals 

Forty eight 10-wk-old CD-1/IGS female mice were obtained from Jackson Laboratory 

(Bar Harbor, ME). All mice were acclimated for 2 week before starting the experiment and were 

randomly assigned to four treatment groups in order to achieve similar mean body weight/group. 

Mice were individually housed in microisolater cages with wood chip bedding and consumed 

standard rodent lab chow and tap water ad libitum during the acclimation period. The animal 

room was maintained at 23°C with a 12-h light/dark cycle during the experimental period. Thirty 

six 10-wk-old CD-1/IGS female mice were fed 120 mg caffeic acid/kg diet, with 12 controls, 

both groups fed for 7 days. After this, half of the mice in each treatment were given 1.25% DSS 

in water for 5 days. Colitis was induced in two groups with DSS in their drinking water, a 

method previously reported with some modifications (Kitajima et al., 1999; Murakami et al., 

2003). The various caffeic acid treatments were fed to the mice for 7 days prior to DSS exposure 

and continually during DSS treatment. Food intake was measured weekly over 2-3 consecutive 

days per week. Body weights were measured twice a week. Signs of disease (weight loss, 

diarrhea, dehydration) were observed daily. The supplemented diets and the DSS-containing 

drinking water were provided to the mice continually until the experiment was terminated. At the 

end of the feeding period, diets were not withdrawn from hamsters before they were killed by 

exposure to CO2.  Blood samples were collected by cardiac puncture in EDTA tubes and 

centrifuged at 5000 x g; 10 min, 4°C. Plasma samples were then frozen at –20°C until analysis. 
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All animal procedures were performed in accordance with the experimental protocol approved 

by the Iowa State University Institutional Animal Care and Use Committee. 

Tissue Sample Collection and Preparation 

The colon and cecum were removed after euthanasia. After washing in phosphate-

buffered saline (PBS), they were placed on filter papers to measure colonic lengths, score 

macroscopic cecal lesions and obtain photographs of each tissue. The colonic and cecal contents 

were removed, and the colon and cecum from each animal were fixed in formalin and all tissue 

samples were evaluated from each group for histopathological analyses. Gross cecal lesions were 

scored using published criteria (Nibbelink et al., 1992). Macroscopic cecal lesions were scored 0-

4 as follows: no gross lesions (grade 0, normal); evidence of atrophy (grade 1, mild); excess 

intraluminal mucus with atrophy localized to the cecal apex (grade 2, moderate); generalized 

cecal atrophy with increased intraluminal mucus and no cecal contents (grade 3, severe); score 3 

plus bloody cecal content (grade 4, most severe). Colonic tissues for myeloperoxidase activity 

were put in 15% DMSO and 0.1 mM PMSF in cryovials (Corning Company, Corning, New 

York). A portion of colon (approximate 1.5 cm) for each sample was placed into RNALater (1.2 

mL) for subsequent RT-PCR analysis of cytokine-specific mRNA expression. All above samples 

were stored at -85°C until analysis. 

Colonic Mucosal Histopathological Analysis  

 Cecum and proximal colon in 10% neutral buffered formalin were embedded in 

paraffin, sectioned, and stained with hematoxylin and eosin (H&E). Sections of the cecum and 

proximal colon were scored by a pathologist (Dr. J. Hostetter) who was blinded to the treatment 

group as described previously (Jergens et al., 2006).  

Reverse Transcription-Polymerase Chain Reaction (RT-PCR) for Colonic 

Inflammation-Related Cytokine Gene Expression 

 Based on our previous study, primers for CYP4B1 (cytochromes P450, family 4B1), IL-

1β, IL-4, IL-17, GAPDH were analyzed in pooled colonic samples from each treatment group. 

Reverse transcription–polymerase chain reaction (RT–PCR) analysis of mRNA in each pooled 

sample was performed as previously described with some modifications (Overbergh et al., 2003) 

Myeloperoxidase Assay Method in Colonic Tissue 
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Myeloperoxidase (MPO) activity which was used to quantify neutrophil accumulation in 

tissues was assessed using 96-well flat bottom microtiter plates (Linbro/Titertek, USA) and was 

previously described with some modifications (Xia et al., 1997)  

Statistical Analysis 

Data were analyzed by the difference between means and statistical significance was 

calculated using two-way ANOVA followed by Tukey method as a Post Hoc test (SAS Institute, 

2003, Cary, NC). The equal variance and normality of residuals assumptions are verified by a 

residual vs. predicted values plot and a histogram of residuals. Colon length, food intake, body 

weight change, MPO activity, cecal histopathology scores, and cytokine/enzyme RT-PCR 

products were reported as means ± SEM. Statistical significance was set at P < 0.05. Pearson 

correlation analysis was used for relationship between MPO activity/cytokine gene expression, 

colon length and cecal histopathology score.  

Plasma Extraction for Detecting Caffeic Acid Concentration 

To 1.0 mL of thaw plasma sample was added 1.0 mL of 0.1M sodium acetate buffer (pH 

5.5), 50µl of o-coumaric acid (Conc. 100µg/mL in 100% MeOH), and 30 µL β-glucuronidase 

(4493units)/ sulfatase (133units) (H2 type). The mixture was vortexed and incubated for 2 hours 

at 37 °C on a shaker, and adjusted pH 3.0 with 4N HCl. Then added  600 mg of NaCl and 4 

volume of ethyl acetate; and centrifuged 10000 x g for 10min at 4ºC to collect supernatant; 

repeated three time above procedure ( add 4 volume of ethyl acetate and centrifuge) to collect 

whole supernatant. Pooled supernatants were dried under N2 (organic phases), then dissolved 

with 200µl of 80% MeOH to filter into HPLC vial for analysis.  

Caffeic Acid Identification and Quantification Using LC-MS-UV Analysis 

Caffeic acid concentration was detected by high-performance liquid chromatography 

(HPLC) coupled to electrospray ionization mass spectrometry (ESI-MS) after extraction from the 

blood plasma. An Agilent Technologies 100 Ion Trap Liquid Chromatography-Electron Spray 

Ionization-Mass Spectrometer, with a coupled UV absorption detector (LC-MS-UV) was used 

for quantification of caffeic acid.  The instrument was tuned and calibrated in the ESI mode. The 

mass spectrometer scanned from 50 to 450 M/Z. Heat block temperature for the analysis was 

450 °C. The nebulizer gas flow was 2.5 L/min; the detector voltage, 1.6 V. 10 µL of sample was 

injected onto a reversed-phase, C18 ODS-AM 5 µm, 120 A column (150 mm × 2.0 mm) (YMC 
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Co. Ltd., Wilmington, NC). Standard was run on the LC-MS. The peaks from the extract 

samples were confirmed by evaluating the retention time and mass spectra of peak with the 

standard. 

Results 

General Effects of Treatments on DSS-Induced Colitis 

Regardless of the treatment group, food intakes measured on the day before drinking 

DSS-supplemented water and second day of the DSS treatment period did not differ (data not 

shown). Food intake was decreased at final day after DSS-treated alone compared with control 

not treated with DSS (Table 7.1). Food intakes in the caffeic acid-only group did not differ from 

control not treated with DSS (Figure 7.2). Mice given caffeic acid had normalized food intake at 

the final day DSS-treated compared to animals not given DSS control (Figure 7.2). Body weight 

change (the percentage of body weight gained in DSS period over the body weight before DSS-

treated) in DSS-positive control was significantly less than in DSS-negative control (P < 0.01). 

DSS-treated mice given diets supplemented with caffeic acid showed improved body weight 

(Figure 2). The mice fed caffeic acid not treated DSS were similar to controls without DSS in 

body weight increase (Figure 7.2). No diarrhea and rectal bleeding were observed during the 

period of DSS treatment. The colon lengths of DSS-treated mice fed caffeic acid was 

significantly longer than those from the DSS-only control (P < 0.01) (Table 7.1).  

Colonic Myeloperoxidase (MPO) Activity of Caffeic acid Treatments and DSS Controls 

Colonic MPO activity in DSS-only control was significantly greater than in non-treated 

control mice (P < 0.01). MPO activities were significantly decreased in the colonic extracts from 

DSS-treated mice fed caffeic acid compared with the colonic extracts from the DSS-only control 

mice (Figure 7.3; P < 0.05). MPO activities in mice fed caffeic acid without DSS exposure did 

not differ from untreated control mice (Figure 7.3). 

Cecal Histopathology Changes in Mice 

Cecal histopathology scores of the DSS-treated mice were significantly more severe 

compared with control mice not given DSS (P < 0.01, Table 7.1). The group fed caffeic acid 

with DSS had significantly less severe cecal microscopic lesion scores than mice treated with 

DSS alone. Representative histological images from each group are shown (Figure 7.4). The 

mean cecal histopathology scores were both significantly decreased in the group fed caffeic acid 
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with DSS compared to DSS-only control (P < 0.05, Figure 7.4). In the group fed caffeic acid 

with DSS, hierarchical clustering on cecal pathological score was showed that mice with 

“severe” cecal damage had higher mean cecal histopathological score of 8.5 (n = 11, p <0.05) 

than mice showing “mild” cecal damage (mean score = 4.5, n = 4) (Figure 7.1). 

Reverse Transcription–Polymerase Chain Reaction Analysis of Cytokine mRNA 

Some genes have been implicated in the pathogenesis of colitis, including CYP4B, IL-

1β, IL-4, IL-17, GAPDH (Ding et al., 2003; Reed et al., 2005; Baer et al., 2006; Ye et al., 2009). 

CYP4B1-specific mRNA differed among the various treatments. There was significant down-

regulation of CYP4B1 mRNA expression in DSS-treated control compared to control not given 

DSS (P < 0.01, Figure 5). Mice fed caffeic acid and treated with DSS had significantly increased 

CYP4B1-specific mRNA levels compared with DSS-only control (P < 0.05, Figure 7.5). 

Plasma Caffeic acid Concentration and Histological Changes 

In the group fed caffeic acid with DSS, caffeic acid concentration was measured by high-

performance liquid chromatography (HPLC) coupled to electrospray ionization mass 

spectrometry (ESI-MS) (Figure 7.6). The range of caffeic acid concentration was 0.8 to 3.2 

µmol/L and average concentration was 1.9 ± 0.6 µmol/L. Based on the hierarchical clustering on 

cecal pathological score in this treatment, the higher cecal histopathological score subgroup with 

“severe” cecal damage had a lower caffeic acid concentration at 1.7µmol/L; whereas the lower 

cecal histopathological score subgroup with “mild” cecal damage had a higher caffeic acid 

concentration at 2.8µmol/L (p <0.05). Furthermore, the higher cecal histopathological score 

subgroup with “severe” cecal damage had significantly greater colonic MPO activity than did 

mice with mild cecal damage (p <0.05). These effects in mice fed caffeic acid/DSS were related 

to differences in caffeic acid bioavailability. In contrast, the subgroup of caffeic acid-fed mice 

with severe cecal damage was significantly associated with a lower plasma concentration of 

caffeic acid (Figure 7.7). 

Relationship between the Colonic Histopathology Score Evaluation and Colonic 

Myeloperoxidase Activity/Colon Length 

Relationships between cecal histopathological score and colonic MPO activity or colon 

length or caffeic acid plasma concentration in caffeic acid/DSS treatment were indicated that a 

significant positive association with cecal score on colonic MPO activity and a significant 

negative association with cecal score on colon length or plasma concentration of caffeic acid, 
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with greater caffeic acid plasma concentration (r = -0.56, P <0.01) or longer colon length (r = -

0.41, P < 0.05, data not shown) and less MPO activity (r = 0.72, P < 0.01) associated with 

decreased cecal histopathological score (Figure 8). Relationships between caffeic acid plasma 

concentration and colonic MPO activity in caffeic acid/DSS treatment were indicated that a 

significant a significant negative association with plasma concentration of caffeic acid on colonic 

MPO activity (r = -0.49, P <0.01) (Figure 7.8).   

Discussions 

Epidemiological studies have also highlighted the association between the consumption 

of caffeic acid-rich food and beverages and the prevention of colitis and cancer (Watabe et al., 

2004). Caffeic acid is the major representative of the hydroxycinnamic acids and occurs in foods 

mainly as chlorogenic acid (5- caffeoylquinic acid), an ester of quinic acid. Coffee is a major 

source of chlorogenic acid in the diet, daily intake of chlorogenic acid in coffee drinkers up to 1 

g. Dietary caffeic acid have been widely assumed to be beneficial to human health by exerting 

various biological effects such as free radical scavenging, metal chelation, modulation of 

enzymatic activity (Baderschneider et al., 2001). Chlorogenic acid and caffeic acid have vicinal 

hydroxyl groups on an aromatic residue and exhibit antioxidant activities, antimutagenic and 

anticarcinogenic effects in vitro (Rice-Evans et al., 1996; Scalbert et al., 2002). Indeed, this is 

consistent with the reported inverse correlation between coffee intake and colon cancer in some 

epidemiologic studies (Tavani et al., 1997).  

In humans, the absorption and metabolism of chlorogenic acid and caffeic acid have 

been studied in human gut and related microflora. Based on a human study, only one third of 

chlorogenic acid was absorbed in the small intestine of humans whereas almost all of the caffeic 

acid was absorbed in the ileostomy subjects who ingested both 2.8 mmol of chlorogenic acid and 

caffeic acid during 24 h (Olthof et al., 2001). In contrast, intake of pure caffeic acid was better 

absorbed in the small intestine than chlorogenic acid and associated with a higher plasma 

concentration and urinary excretion of intact caffeic acid and its tissue metabolites in humans 

(Olthof et al., 2001). 

In another human study, five healthy male consumed 100, 200, and 300 mL of red wine 

corresponding 0.9, 1.8, and 2.7 mg of caffeic acid, respectively. Plasma concentration were 

measured at different times (0-300 min) for evaluating the antioxidant effect of caffeic acid. 
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Plasma samples were prepared by HCl-hydrolysis method and analyzed by HPLC. The method 

of plasma total radical-trapping antioxidant parameter (TRAP) was determined for antioxidant 

potential of caffeic acid. Plasma concentrations of caffeic acid and antioxidant property were 

dose-dependent and the Cmax was reached at about 60 min after red wine intake. At this time 

point, plasma caffeic acid concentrations were 1.19, 3.23, and 4.90 ng/mL for each group, 

associated with 6.0, 19.6, and 25.4 % increases in TRAP. Caffeic acid was bioavailable and was 

correlated with the antioxidant potential of red wine intake (Simonetti et al., 2001).  

Coffee was one of the most popular sources to investigate the bioavailability and 

metabolism of caffeic acid derivatives. Five nonsmoking healthy male volunteers were 

administered two cups of coffee containing 4 g of instant coffee powder (corresponding to total 

caffeic acid intake of 441.4 mg, or 6.3 mg/kg BW). The results showed a highly significant 

increase in cumulative urinary excretion of isoferulic, ferulic, and dihydroferulic acid ranging 

from 1.9 to 15.1 mg. Urinary 3 -hydroxyhippuric acid was increased to 102.9 mg over 24 h urine 

for postsupplementation (Rechner et al., 2001). In present study, we did not find the isoferulic, 

ferulic, and 3-Hydroxyhippuric acid in plasma. The reason may be that this strain of mice did not 

form these metabolites.  The concentration of caffeic acid was less in mouse diet (120mg/kg diet, 

24 mg/kg BW, equivalent to a human dose of ~2.4 mgk/kg), which might result in less ability to 

detect these metabolites.  

Most of the caffeic acid was present in plasma as glucuronate/sulfate forms. Plasma 

caffeic acid was derived from hydrolysis of chlorogenic acid in the gastrointestinal tract when 

drinking the coffee containing no free caffeic acid (Nardini et al., 2002). Ten healthy male 

nonsmoker moderate-coffee drinkers were asked to ingest a standard 200 mL brewed coffee 

(corresponding 166mg caffeic acid) which contained 478.9 µg/mL chlorogenic acid and 

undetectable caffeic acid. If the coffee was hydrolyzed by HCl-hydrolysis method, no 

chlorogenic acid and only 830.0µg/mL caffeic acid and small amount of p-coumaric acid and 

ferulic acid were found in hydrolysis solution. Plasma samples were collected 1 and 2 h after 

coffee administration for analyzing free and total phenolic acid content. Caffeic acid was the 

only phenolic acid found in plasma samples after coffee administration, whereas chlorogenic 

acid was undetectable. One hour after coffee consumption, free plasma caffeic acid level was 

20.9ng/mL, whereas 91.1 and 91.3 ng/mL were found with β-glucuronidase treatment and 

alkaline hydrolysis (Nardini et al., 2002).  In present study, caffeic acid was also present in 
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plasma as glucuronate/sulfate forms. Plasma caffeic acid concentration was also measured after 

β-glucuronidase/sulfatase treatment; free plasma caffeic acid was not detected in mice.  

            It is much better to compare with animal models for present study than human trials 

because some factors may be different from humans (dosage, duration, gut microbes). The 

absorption and metabolism of caffeic acid were studied with different dosages to test plasma 

profiles of their metabolites. One rat study, using 700 µmol/kg body weight of caffeic acid and 

collecting blood from the tail for 6 h after administration, free caffeic acid and ferulic acid were 

detected at 1.2 and 1.6 µmol/L, respectively; caffeic acid glucuronides were the main plasma 

metabolites 2 h after administration with a concentration of 26.1± 3.5µmol/L, corresponding to 

41% of all of the metabolites determined at this time; caffeic acid sulfate/glucuronide conjugates 

was 12µmol/L (Azuma et al., 2000). Comparing with our present study, mice were fed 120 mg 

caffeic acid/kg diet for 7 days before DSS treatment and 5 days during DSS in drinking water 

and food intake was around 5 g daily. The intake of caffeic acid was 3.35µmol/day and total 

intake was 40.2 µmol (x12 day).  In rat study, using 700 µmol/kg body weight of caffeic acid and 

based on the body weight of rats (around 200g), the total amount was 140 µmol which was close 

to 40-fold that of the present study as a daily dose. In a rat study, caffeic acid glucuronides were 

26.1µmol/L, corresponding to 41% of all of the metabolites which included free caffeic acid, 

ferulic acid, and caffeic acid sulfate/glucuronide conjugates. The total concentration was 

63.7µmol/L which was 34-fold of the present study (average of CA concentration: 1.9µmol/L). 

Also in another rat study, giving 250µmol/day caffeic acid for 8 d, total urinary excretion of 

caffeic, ferulic, and isoferulic acids was 28.1 % of intake (mol/mol); urinary m-

hydroxyphenylpropionic acids (mHPP) was 4.0 %. Plasma metabolite concentrations in rats fed 

caffeic acids for 8 d were caffeic acid (41.3µmol/L), ferulic acid (7.3µmol/L), isoferulic acid (4.5 

µmol/L), hippuric acid (54.2 µmol/L), and m-hydroxyphenylpropionic acid (1.4µmol/L) 

(Gonthier et al., 2003).  The total intake for 8d was 2mmol (250µmol/day x 8 d) which was 50-

fold our present total amount of 40.2 µmol (3.35µmol/day x12 day) and the total absorbed 

caffeic acid equivalent concentration was 108.73µmol/L which was also close to 50-fold that of 

plasma CA concentration in our present study (1.9µmol/L). Furthermore, a later study in which 

the dose was much lower than previous studies was more relevant to our present study. The dose 

in the male Wistar rats was 100 µmol/kg body weight of caffeic acid by gastric intubation and 

the average BW was 150g. The total amount consumed was 15 µmol which was ~5-fold greater 
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than the present dosage (3.35µmol/day). The serum concentration of intact CA in the portal vein 

peaked at 10 min after administration as quantified by a coulometric detection method using 

HPLC-ECD, with a C max of 11.24µmol/L for caffeic acid (Konishi et al., 2005) which was also 

5-fold that of CA concentration in the present study (1.9µmol/L). Thus, the plasma concentration 

detected in the present study relative to dose seemed proportionately similar to previous findings. 

               Across these three animal studies, the mean and standard deviation of plasma caffeic 

acid concentration were 26.1±3.5 µmol/L (n = 3, Azuma et al. (2000)), 41.3± 6.1µmol/L (n= 8, 

Gonthier et al. (2003)) and 11.2± 2.3 µmol/L (n = 3, Konishi et al. (2005)), respectively, whereas 

the individual range and variable difference were not reported. The percentages of standard 

deviation of mean (CV) were 13.4%, 14.8%, 20.5%, respectively. Our present study showed 1.9 

± 0.6 µmol/L (CV=31.5%, n = 15) which indicated more variability, from 0.8 to 3.2µmol/L at a 

lower dose of CA diet fed to mice compared with the other three animal study, possibly 

associated with greater interindividual differences in gut microbial degradation of caffeic acid in 

the present study than in previous studies, but this remains to be determined. 

Myeloperoxidase (MPO) is a mammalian enzyme stored in neutrophils and 

macrophages. During inflammatory process, these leukocytes infiltrated to the site of 

inflammation and increased the local releasing of non-specific inflammatory mediators, such as 

cytokines, chemokines, nitric oxide (NO), and including MPO, enhancing tissue destruction 

(Podolsk, 2002; Jackson et al., 2006). Tyrosyl radical was generated by myeloperoxidase and 

activated phagocytes to damage both proteins and lipids. Increased tyrosyl had been detected in 

inflammatory disease and many degenerative disorders (Heinecke et al., 2002).  

High MPO level was found in DSS-induced experimental colitis in which MPO activity 

was decreased in DSS plus curcumin-treated BALB/c mice (Deguchi et al., 2007). In the other 

acetic acid-induced rat colitis, tropisetron, a 5-HT receptor antagonist, significantly decreased 

colonic MPO activity, lipid peroxidation, and inflammatory cytokines interleukin-1beta, 

interleukin-6 and tumour necrosis factor-alpha levels (Mousavizadeh et al., 2009). On the other 

hand, 10µmol/kg caffeic acid phenethyl ester attenuated the tissue levels of MPO and the 

testicular injury induced by testicular torsion in rats (Atik et al., 2006). On acute necrotizing 

pancreatitis rat model which induced by glycodeoxycholic acid, caffeic acid phenethyl ester 

(CAPE) significantly reduced the activity of MPO in pancreatitis plus CAPE infusion treatment 
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(Turkyilmaz et al., 2008). In our present study, colonic MPO activity was significantly decreased 

in DSS-treated mice fed caffeic acid compared with the DSS-only control mice. Furthermore, a 

significant negative association with plasma concentration of caffeic acid on colonic MPO 

activity was indicated with greater caffeic acid plasma concentration related to lower colonic 

MPO activity.  

               One important result showed that CYP4B1-specific mRNA was also upregulated by 

caffeic acid treated DSS-induced mice, compared with DSS treated controls which confirmed the 

previous study in C3H/HeOuJ colitis (Ye et al., 2009). We did not find a correlation of CYP4B1 

with plasma caffeic acid concentrations and clustering difference on cecal pathological score in 

this treatment, but technical problems only permitted analysis of CYP4B1 in 6 of 18 mice fed 

caffeic acid + DSS. The relation between caffeic acid concentration and CYP4B1 deserves 

further investigation given the previous finding of the importance of CYP4B1 in caffeic acid 

protection from colitis.  

               Furthermore, in the group fed caffeic acid with DSS, based on the hierarchical 

clustering on cecal pathological score in this treatment, higher caffeic acid concentration was 

associated with decreased cecal histopathological score. This study was in concordance with our 

previous isoflavone bioavailability study which reported that high urinary isoflavone excreters 

had significantly decreased non-HDL cholesterol compared with low isoflavone excreters among 

38 Golden Syrian hamsters fed soy protein diet for 4 wk. Urinary isoflavone excretion 

phenotypes predicted the cholesterol-lowering efficacy of soy protein (Ye et al., 2006).  In our 

present study, we investigated that the caffeic acid plasma concentration was an important, 

potentially controllable variable in studies of effects of caffeic acid on colitis. In a conclusion, 

dietary caffeic acid protected against DSS induced colitic pathology in mice. This protective 

effect may have been partly mediated by increasing CYP4B1. Also these effects in mice treated 

with caffeic acid and DSS were influenced strongly by caffeic acid bioavailability, possibly 

related to interindividual differences in gut microbial degradation of caffeic acid, which is under 

study currently.   
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Footnotes 
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measurements.  

References 

Atik E, Görür S, Kiper AN. The effect of caffeic acid phenethyl ester (CAPE) on 

histopathological changes in testicular ischemia-reperfusion injury. Pharmacol Res. 

2006; 54(4):293-7.  

Azuma K, Ippoushi K, Nakayama M, Ito H, Higashio H, Terao J. Absorption of chlorogenic acid 

and caffeic acid in rats after oral administration. J Agric Food Chem. 2000;48(11):5496-

500. 

Baer BR, Rettie AE. CYP4B1: an enigmatic P450 at the interface between xenobiotic and 

endobiotic metabolism. Drug Metab Rev 38(3):451-76, 2006. 

Deguchi Y, Andoh A, Inatomi O, Yagi Y, Bamba S, Araki Y, Hata K, Tsujikawa T, Fujiyama Y. 

Curcumin prevents the development of dextran sulfate Sodium (DSS)-induced 

experimental colitis. Dig Dis Sci. 2007 Nov;52(11):2993-8. Epub 2007 Apr 11. 

Ding X, Kaminsky LS. Human extrahepatic cytochromes P450: function in xenobiotic 

metabolism and tissue-selective chemical toxicity in the respiratory and gastrointestinal 

tracts. Annu Rev Pharmacol Toxicol 43:149–73, 2003.  

Ek RO, Serter M, Ergin K, Yildiz Y, Cecen S, Kavak T, Yenisey C. The Effects of Caffeic Acid 

Phenethyl Ester (CAPE) on TNBS-induced Colitis in Ovariectomized Rats. Dig Dis Sci 

2007 Oct 24. 

Gonthier MP, Verny MA, Besson C, Rémésy C, Scalbert A. Chlorogenic acid bioavailability 

largely depends on its metabolism by the gut microflora in rats. J Nutr. 2003 

Jun;133(6):1853-9. 

Heinecke JW. Tyrosyl radical production by myeloperoxidase: a phagocyte pathway for lipid 

peroxidation and dityrosine cross-linking of proteins. Toxicology. 2002 Aug 

1;177(1):11-22 



www.manaraa.com

171 

Jackson L, Evers BM. Chronic inflammation and pathogenesis of GI and pancreatic cancers. 

Cancer Treat Res. 2006;130:39–65.   

Jergens AE, Dorn A, Wilson J, Dingbaum K, Henderson A, Liu Z, Hostetter J, Evans RB, 

Wannemuehler MJ.Induction of differential immune reactivity to members of the flora 

of gnotobiotic mice following colonization with Helicobacter bilis or Brachyspira 

hyodysenteriae. Microbes Infect, 2006 8(6):1602-10. 

Kitajima S, Takuma S and Morimoto M. Changes in colonic mucosal permeability in mouse 

colitis induced with dextran sulfate sodium. Exp Anim 1999 48:137–143.  

Konishi Y, Hitomi Y, Yoshida M, Yoshioka E. Pharmacokinetic study of caffeic and rosmarinic 

acids in rats after oral administration. J Agric Food Chem. 2005 Jun 15;53(12):4740-6.   

Monteiro M, Farah A, Perrone D, Trugo LC, Donangelo C. Chlorogenic acid compounds from 

coffee are differentially absorbed and metabolized in humans. J Nutr. 2007 

Oct;137(10):2196-201. 

Mousavizadeh K, Rahimian R, Fakhfouri G, Aslani FS, Ghafourifar P. Anti-inflammatory effects 

of 5-HT receptor antagonist, tropisetron on experimental colitis in rats. Eur J Clin 

Invest. 2009 Mar 19. [Epub ahead of print].   

Murakami A, Hayashi R, Tanaka T, Kwon KH, Ohigashi H and Safitri R. Suppression of dextran 

sodium sulfate-induced colitis in mice by zerumbone, a subtropical ginger 

sesquiterpene, and nimesulide: separately and in combination. Biochem Pharmacol 

66:1253–1261, 2003. 

Nardini M, Cirillo E, Natella F, Scaccini C. Absorption of phenolic acids in humans after coffee 

consumption. J Agric Food Chem 2002;50:5735– 41. 

Nibbelink SK, Wannemuehler MJ. An enhanced murine model for studies of Serpulina 

(Treponema)hyodysenteriae pathogenesis. Infect Immun 1992; 60:3433-3436.  

Olthof MR, Hollman PC, Katan MB. Chlorogenic acid and caffeic acid are absorbed in humans. 

J Nutr. 2001 Jan;131(1):66-71. 

Olthof, M. R., Hollman, P. C. H. & Katan, M. B. Chlorogenic acid and caffeic acid are absorbed 

in humans. J. Nutr, 2001 131:66-71. 

Overbergh L, Giulietti A, Valckx D, Decallonne R, Bouillon R and Mathieu C.The use of real-

time reverse transcriptase PCR for the quantification of cytokine gene expression. J 

Biomol Tech, 2003 14:33-43. 



www.manaraa.com

172 

Podolsky DK. Inflammatory bowel disease. N Engl J Med. 2002;347:417–429.  

Rechner AR, Spencer JPE, Kuhnle G, Harn U, Rice-Evans CA. Novel biomarkers of the 

metabolism of caffeic acid derivatives in vivo. Free Radic Biol Med. 2001;30:1213–22. 

Reed KL, Fruin AB, Gower AC, Gonzales KD, Stucchi AF, Andry CD, O'Brien M, Becker JM. 

NF-κB Activation Precedes Increases in mRNA Encoding Neurokinin-1 Receptor, 

Proinflammatory Cytokines, and Adhesion Molecules in DSS- Induced Colitis in Rats. 

Dig Dis Sci, 2005 50(12):2366-78.  

Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids 

and phenolic acids. Free Radic Biol Med. 1996;20(7):933-56. Erratum in: Free Radic 

Biol Med 1996;21(3):417. 

Scalbert A, Morand C, Manach C, Rémésy C. Absorption and metabolism of polyphenols in the 

gut and impact on health. Biomed Pharmacother. 2002;56(6):276-82.  

Simonetti P, Gardana C, Pietta P. Plasma levels of caffeic acid and antioxidant status after red 

wine intake. J Agric Food Chem. 2001;49(12):5964-8. 

Tavani A, Pregnolato A, La Vecchia C, Negri E, Talamini R, Franceschi S. Coffee and tea intake 

and risk of cancers of the colon and rectum: a study of 3,530 cases and 7,057 controls. 

Int J Cancer. 1997;9;73(2):193-7. 

Turkyilmaz S, Alhan E, Ercin C, Kural Vanizor B, Kaklikkaya N, Ates B, Erdogan S, Topaloglu 

S. Effects of caffeic acid phenethyl ester on pancreatitis in rats. J Surg Res. 2008 

Mar;145(1):19-24. 

Xia Y, Zweier JL. Measurement of myeloperoxidase in leukocyte-containing tissues. Anal 

Biochem 1997;245:93-96.  

Ye Z, Liu Z, Henderson A, Lee K, Hostetter J, Wannemuehler M, Hendrich S. Increased 

CYP4B1 mRNA Is Associated with the Inhibition of Dextran Sulfate Sodium-Induced 

Colitis by Caffeic Acid in Mice. Exp Biol Med (Maywood). 2009 Mar 23. [Epub ahead 

of print].  

Ye Z, Renouf M, Lee SO, Hauck CC, Murphy PA, Hendrich S. High urinary isoflavone 

excretion phenotype decreases plasma cholesterol in golden Syrian hamsters fed soy 

protein. J Nutr. 2006 Nov;136(11):2773-8. 

 

 



www.manaraa.com

173 

Table 7.1. Colon length short /food intake suppression were prevented and cecal 

histopathology score was significantly decreased in mice fed caffeic acid after DSS 

treatment1  

 Colon 
length (mm) 

Cecal 
histopathology 
score 

Food intake (g/d)  

  

 First day 
before DSS 

Final day after 
DSS 

No DSS 71.1±9.2 4.5±1.0 4.1±1.1 3.9±1.5 

DSS only 61.5±3.6* 9.2±1.7# 4.5±0.9 2.5±1.7$ 

Caffeic acid and  DSS 68.5±6.6 6.9±2.7 4.1±1.2 3.9±0.9 

Caffeic acid only 79.6±1.9 5.1±1.9 4.2±0.8 4.3±0.9 

 

*P < 0.01 significantly shorter compared to the control diet (no DSS) with other treatment 

groups in colon length; #P < 0.01 significantly greater compared with cecal histopathology score 

within DSS-only group; $P < 0.05 significantly less than the control diet (no DSS) in final day 

food intake after DSS. 1In the experimental period, 48 CD1/IGS female mice were fed AIN 93G 

supplemented with/without caffeic acid.  
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Figure 7.1. Hierarchical clustering on cecal pathological score with caffeic acid treated in DSS-

induced colitis. Mice with “severe” cecal damage showed mean cecal histopathological score of 

8.5 (p <0.05) than did mice showing “mild” cecal damage (mean score = 4.5). 
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Figure 7.2. Food intake and body weight for DSS-induced colitis in CD1/IGS female mice. (A) 

Food intake suppression was prevented by caffeic acid/DSS compared with DSS-treated 

controls; *P < 0.05 significantly less than the control diet (no DSS) in day 8 and 12 food intake 

after DSS. (B) Caffeic acid treatment prevented mouse body weight loss by DSS; *p < 0.05 

indicated that caffeic acid/DSS treatment had a less body loss compared to DSS-only positive 

control.  
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Figure 7.3. MPO activity was decreased by caffeic acid treated in DSS treatment group; *p < 

0.05 indicated myeloperoxidase (MPO) was inhibited in mice given caffeic acid/DSS compared 

with DSS-treated controls. 
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Figure 7.4. Cecal histopathology magnifications (400X, Scale bar = 100um) of cecal mucosa 

from mouse were given as No DSS, DSS only, Caffeic acid + DSS, and Caffeic acid only 

treatments; *p < 0.05 indicated that caffeic acid treatment reduced inflammatory cell infiltration 

within the lamina propria and prevented epithelial ulceration compared to DSS only control.   



www.manaraa.com

178 

 

Figure 7.5. CYP4B1gene expression was improved in caffeic acid/DSS treatment; *p < 0.05 

indicated expression of CYP4B1was increased by caffeic acid/DSS treatment compared with 

DSS-treated control. 
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Figure 7.6. (A) Caffeic acid and o-coumaric acid (standard) LC-MS chromatogram profile and 

(B) ESI+TIC (Negative mode) mass spectrum. The expected molecular weight for caffeic acid is 

180 g/mol. The [M]-peak for caffeic acid with m/z of 179 was observed on ESI negative ion 

mass spectra based on the loss of -H from the -COOH group. The molecular weight for standard 

o-coumaric acid is 164 g/mol. The [M]-peak for o-coumaric acid with m/z of 163 was observed 

on ESI negative ion mass spectra. 
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Figure 7.7. Histological changes, MPO activity, colon length and plasma concentration of 

caffeic acid in low and high subgroups. *p < 0.05 indicated caffeic acid-fed mice with severe 

cecal damage had significantly greater colonic MPO activity and lower caffeic acid plasma 

concentration than did mice with mild cecal damage. No different was found between the 

high/low pathological score and short/long colon length.  
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Figure 7.8. Relationships between caffeic acid plasma concentration and cecal histopathological 

score or colonic MPO activity in caffeic acid/DSS treatment were indicated that a significant a 

significant negative association with plasma concentration of caffeic acid on cecal score (r = -

0.56, P <0.01) and colonic MPO activity (r = -0.49, P <0.01); a positive association with MPO 

activity on cecal score (r = 0.72, P < 0.01).  
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CHAPTER 8. GENERAL CONCLUSIONS 

General Discussion 

Phenolics that are not absorbed in the upper small intestine reach the large intestine. The 

gut microflora hydrolyzes these glycosides or esters into aglycones and further metabolizes the 

aglycones into various aromatic acids. Specific active metabolites are produced by the colonic 

microflora. After absorption, original phenolics or microbial metabolites are mainly conjugated 

with glucuronic acid, sulfate, or glycine in intestinal cell or liver. Gut microflora play an 

important role in the metabolism of these compounds. Moreover, the identification of microbial 

metabolites becomes a new field of research because microbial metabolites may have a 

physiologic effect and may be used as biomarkers for phenolic intake. Based on above essential 

principles, Chapter 3, 4 and 5 are original projects which were performed on metabolism or 

transport of phenolics in different microbial models or Caco-2 cell line in vitro. 

In Chapter 3, we have conducted with the two whole plant extract phenolic mixtures in 

human fecal or mouse cecal bacterial in vitro anaerobic incubations, in which E. purpurea 

extract consists of three main phenolics- cichoric acid, caftaric acid, and caffeic acid when the H. 

perforatum extract consists of two main phenolics- rutin and hyperoside. We found that all 

phenolic compounds were degraded by human fecal and mouse cecal content with similar 

patterns. Of the 3 major compounds in Echinacea were the degradation rate of caffeic acid = 

cichoric acid < caftaric acid. In mouse cecal content incubation with Echinacea, the degradations 

rate were caffeic acid < caftaric acid = cichoric acid. More interestedly, we found one specific 

metabolite, m-hydroxyphenylpropionic acid (mHPP), which was reduced and dehydroxylated 

from caffeic acid by gut bacteria during E. purpurea incubation. Six of 20 human subjects’ fecal 

smaples produced caffeic acid, resulting in significantly lower caffeic acid degradation rate than 

that of caffeic acid nonproducers. Although no hyperoside productions were found in fecal 

incubations of Hypericum extracts, the degradation of hyperoside was significantly slower than 

that of rutin. We may predict that some hyperoside was metabolized from rutin according its 

metabolic pathway. 

In Chapter 4, we have performed oral phenolic degradation and identified some specific 

microbes which were presented in the human oral cavity. A 7-compound mixture of caffeic acid, 
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rutin, daizein, quercetin, naringenin, luteolin and myricetin was incubated with saliva in 

anaerobic BHI media. In this study, we were interested in the interindividual variations and the 

influence of oral microflora composition on phenolic metabolism. Definitely, we found all 

phenolic compounds were degraded in oral incubation at different rates. Oral degradation rates of 

the compounds differed as follows: caffeic acid = rutin > quercetin = myricetin= naringenin > 

luteolin > daidzein (p < 0.05). The cluster analysis was showed that higher and lower subgroups 

of caffeic acid, rutin and naringenin degradation rate were significantly different. Moreover, 

sequencing of 16S rDNA from the higher intensity band of interest showed concordance with 

known species as the Actinomycetales Order with higher caffeic acid degrader and Lactobacillus 

brevis/Lactobacillus reuteri with higher rutin degrader which may affect human oral degradation 

of these phenolics and prevention of gum disease. 

H. perforatum extract and the phenolic mixture were conducted within Caco-2 cell 

monolayers in Chapter 5. We used chlorogenic acid, compared with quercetin, amentoflavone, 

and pseudohypericin as individual compound, mixture, or Hp extract. Although the partial results 

were reported in this biotransformation study of phenolic compounds, these particular 

compounds, especially pseudohypericin was unstable or light sensitive in environment, were 

found to transport the Caco-2 cell monolayers with at least some different permeable activities. 

The other major aspect investigated in the present project was the bioavailability study 

related to anti-colitic effect of caffeic acid in in vivo, including two separate animal designs 

which were discussed in Chapter 6 and 7. Firstly, C3H/HeOuJ mice were used to induce colitis 

by DSS. Three dietary phenolics, caffeic acid, rutin, and hypoxoside were fed and only caffeic 

acid protected against DSS induced colitis, in association with normalization of CYP4B1 

expression. Although the mechanism of regulation of CYP4B1 related to inflammatory disease 

was unclear, this is a promising research area for future study. 

One of most important studies in this dissertation was how the bioavailability issue 

affected the efficacy of phenolic compounds in animal model (Chapter 7). We chose caffeic acid 

because of its protective effect on DSS- induced colitis in C3H/HeOuJ mice. In this second 

caffeic acid study, the main idea was to examine interindividual variability in the efficacy of 

caffeic acid in CD-1/IGS female mice which was used for carcinogen-induced cancer model; and 
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the female alone mice selected was due to the more absorbability of caffeic acid than male mice 

based on our previous isoflavone bioavailability study. The main finding was that two subgroups 

were identified based upon cluster analysis of cecal histopathological score in mice fed caffeic 

acid/DSS. The effect in mice was related to differences in caffeic acid bioavailability. The 

relationship analysis indicated that greater caffeic acid plasma concentration and less MPO 

activity were associated with decreased cecal histopathological score.  

As a conclusion, phenolic compounds were degraded by oral or gut microflora. The 

metabolism pathway was a complex process, especially in E. purpurea and H. perforatum 

extract. The novel phenolics in H. perforatum extract were absorbable by carcinoma colon cell 

monolayers. Caffeic acid was deserved the promising research future in anti-inflammatory area, 

particularly in molecular mechanism related to revealing anti-colitic pathway.  

Recommendations for Future Research 

With respect to the bacterial incubation screening, much about the microbial metabolite 

mechanisms of hydrolyzing of phenolics remains unknown, including which species release 

esterase to split the sugar moiety and what bacterial enzyme cleave the aglycones into various 

aromatic acid metabolites. It is necessary to determine which species produce caffeic acid during 

the whole extract microbial metabolism and are responsible for generating metabolites. In future 

study, using genomic PCR-DGGE and DNA sequence technique, identification of bacterial 

species may be a valuable objective to further investigate as well as suitable for screening oral 

bacterial species which associated with high and low degrader of phenolics. 

In Caco-2 transport study, because glucuronide conjugates are expected to be major 

and less bioactive metabolites from herbal phenolics, and based on the current preliminary result, 

the apparent permeability were quite low among the most phenolic compounds, the conjugated 

compounds may be dominated during the Caco-2 cell treated with these active phenolics. The 

next step, we need to further conduct the method to investigate the inducibility of cytochrome P-

450, glucuronidation, sulfation, and amino acid conjugation transformation by herbal 

components. 
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With regard to the protection effect of caffeic acid on DSS- induced colitis in animal, 

the further human study including the epidemiological investigation or human IBD disease-

treated with different dose are the priority for consideration. In first caffeic acid human study, the 

subjects who we will focus on will be separated for higher dose of caffeic acid intake and lower 

or non caffeic acid intake to compare the colitis morbidity or with morbidity risk survey. The 

second human study, with consuming different doses of caffeic acid, we will observe the effect 

of caffeic acid on human colitis-treating recovery results. These may lead to well understanding 

of the interaction between animal study and human observation, which will help develop new 

drugs in clinic use.  
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